
 1 

 Evaluating Stream Predicates over Dynamic Fields 
J.C. Whittier   Qinghan Liang              Silvia Nittel   

School of Computing and Information Science  
University of Maine, USA 

{john.c.whittier}@maine.edu, {qliang, nittel}@spatial.maine.edu  
   

ABSTRACT 
Technological advances have created an unprecedented 
availability of inexpensive sensors able to stream environmental 
data in real-time. However, we still seek appropriate data 
management technology capable of handling this onslaught of 
sampling in previously unavailable spatial and temporal density. 
Data stream engines (DSEs) are state of the art data management 
tools that have update throughput rates of up to 500k tuples/s. In 
previous work we have shown that DSEs can be extended to 
generate smooth representations of continuous spatio-temporal 
fields sampled by up to 250K sensors on-the-fly in near real-time, 
creating a new representation every second. In this paper we 
investigate a spatio-temporal stream operator framework that can 
efficiently execute predicate operators over such spatio-temporal 
fields. Typical predicates are e.g. “find all sub-areas in a field that 
are below or above a certain threshold value”. We present the 
requirements, the approach taken, and our results along with a 
performance evaluation.  

Categories and Subject Descriptors 
H.3.3 [Information System Applications]: Spatio-temporal 
systems – data streaming. 

General Terms 
Data stream engines, spatio-temporal predicate, algorithms, 
performance. 

Keywords 
Data streams system, sensor data streams, fields, continuous 
phenomena. 

1. INTRODUCTION 
Real-time data streaming with sensors is used in applications such 
as intrusion monitoring, manufacturing, traffic management, 
disaster response, radioactive accidents, air quality control, pollen 
monitoring and other types of sensor networks [5, 24, 25]. 
Thousands of sensors are distributed over a geographic area and 
connected directly to the Internet to collect high-frequency 
updates [19]. With this technology we can also monitor 
continuous phenomena over e.g. a metropolitan area in real-time, 
continuously over space and time.  Individual sensors can only 
deliver point-based, raw sensor data streams, but humans more 
intuitively perceive integrated, continuous representations of 
continuous phenomena. However, current geographic information 
systems are unable to handle the permanent high update load of 
thousands of sensors and on-the-fly integrate these streams into 
representations such as a TIN or raster every few seconds.  

In previous work [22, 28], we have shown that commercial data 
stream engines (DSEs) such as Microsoft Streaminsight, IBM’s 
Infosphere, Oracle’s CEP or Streambase [2, 4, 27, 29] are viable 
systems for dealing with continuous high throughput of very large 
numbers of concurrently streaming sensors. We developed a DSE 
architecture extension consisting of a novel spatio-temporal 
stream operator framework for dynamic continuous phenomena 
(ST-CPF) [22, 28]. This scalable framework consists of a set of 
stream-based, main memory query operators that are connected 
via queues, and generate raster representations of a continuous 
phenomenon on-the-fly. ST-CPF contains a main memory, spatio-
temporal grid index and an efficient kNN-based algorithm of 
spatio-temporal inverse distance weighting (ST-IDW). ST-CPF 
achieves a throughput of updates of up to 250K sensors with 
individual sensor update rates of 1 update/s, generating new raster 
representations every few seconds. With such a framework, it is 
possible to observe a dynamic phenomenon continuously over 
both space and time in near real-time. 
For continuous analysis of such phenomena, also called fields, 
threshold operators are key. A threshold operator retrieves spatio-
temporal subregions of a field in which the field’s values meet a 
user-set threshold (e.g. wild fires in a temperature field, or 
concentration values in a toxic plume). More mathematically, 
such an operator is a predicate. A predicate is expressed as a 
condition over the values of a continuous phenomenon, and 
elements that evaluate to true are elements of the result set. The 
condition can target the spatial, temporal or thematic component 
of a phenomenon. For example, the following query contains a 
thematic predicate retrieving the radiation values satisfying a 
condition within the boundary of Japan (the result is rendered as a 
raster): 

SELECT RASTER(Predicate(ST-IDW(@Grid, s.loc, s.val, @IC), 
@Condition)) as high_radiation_deposition 
FROM sensors s WINDOW 5min  
WHERE s.sensor_type=radiation AND INSIDE(s.loc, @Japan) 

Predicates over continuous phenomena are common stream 
queries. Evaluating such predicates over continuous phenomena 
relies on point-based sensor streams. In reality, a continuous 
environmental phenomenon such as the dispersion of radioactive 
particles over a region is seamlessly distributed over a geographic 
region, and gradually changes over space and time. There are 
typically no ‘hard’ boundaries. So, how do we evaluate the 
predicate result most accurately? Here, a phenomenon’s 
continuous representation has to be generated on-the-fly and the 
predicate computed. However, the predicate result is potentially a 
small subregion of the entire phenomenon, and generating entire 
representations is computationally expensive. The question is how 
to evaluate predicates in sensor stream environment efficiently? 
Thirdly, the predicate result region(s) changes continuously over 
space and time as the region(s) expands, shrinks or simply moves. 
How and in what situations can we use these characteristics to 
optimize predicate evaluation using incremental evaluation?  
Our contributions:  In this paper, we present several approaches 
to evaluating predicates over spatio-temporally continuous 
phenomenon efficiently. In a naïve method, which we use as the 

 

Permission to make digital or hard copies of all or part of this work for 
personal or classroom use is granted without fee provided that copies are 
not made or distributed for profit or commercial advantage and that 
copies bear this notice and the full citation on the first page. To copy 
otherwise, or republish, to post on servers or to redistribute to lists, 
requires prior specific permission and/or a fee. 
5th Int’ Workshop on Geostreaming, Nov 4, 2014, Dallas, TX, USA. 
Copyright 2014 ACM 1-58113-000-0/00/0010 …$15.00. 
 



 2 

baseline, a field is represented as a raster, and all cells of the 
entire raster are interpolated within each query window. 
Subsequently, each cell is filtered based on the predicate 
condition. We developed two novel approaches that start with the 
predicate condition to determine which subregions of the field 
need be interpolated, i.e. the region growing and the tile-based 
approaches. The key to these methods is that a pre-filter generates 
seed cells that are likely included in the predicate results. In the 
region growing approaches the seeds are grown into regions. With 
a high-resolution field representation, this can result in significant 
runtime and memory cost due to the very large number of grid 
cells. To counter this cost, we also develop the tile-based 
approach. Here, raw sensor samples are filtered to identify ‘seed 
tiles’ (a group of cells) instead of seed cells, which are then 
expanded. Furthermore, we investigated an informed, incremental 
predicate evaluation strategy. Here, the evaluation of a new query 
window starts with the result of the previous window as seeds, 
and makes incremental updates to determine which cells will be 
elements of the predicate result, and which not. The performance 
results show that the informed method outperforms the un-
informed tile expansion method if a phenomenon is slowly 
changing over time and the area is large.  
The remainder of this paper is structured as follows: Section 2 
gives a short overview of our previous work, which is the 
background for this article. In Section 3, we state the problem. In 
Section 4 and 5, we present and discuss evaluation strategies for 
predicates over dynamic phenomena. Section 6 contains the 
performance evaluation. Section 7 discusses the related work, and 
Section 8 summarizes the results and discusses future work. 

2. Previous work 
2.1 Data stream engines 
A data stream engine (DSE) is a software system designed to 
manage unbounded data streams such as those found in real-time 
financial, emergency or intrusion monitoring applications. Data 
streams are continuous and the amount of data arriving at a 
particular time is unbounded. Further, updates per entity (e.g. a 
sensor or a stock) are often extremely frequent. A generic sensor 
data packet can represented as a tuple or a record which contains 
attributes such as <sensor id, sensor type, timestamp, location, 
value measured>. In traditional database systems (DBSs), queries 
are evaluated by pulling data from disk, while in DSEs queries are 
evaluated over data pushed from stream sources. Additionally, 
traditional DBS queries are executed one time, whereas DSE 
queries are continuously re-evaluated and potentially run 
indefinitely. This means that new strategies had to be developed 
to handle these challenges: 

Continuous Query Model: Traditional DBS queries operate 
on a finite data set (i.e. a relation) and assume set-based data, i.e. 
they do not have to consider the order of data. In contrast, 
continuous queries operate indefinitely on an unbounded data set 
and take the temporal order of arriving data into consideration 
using an additional specification for query evaluation intervals, 
also called query windows [3]. 

Low Latency: Data from streams is generally critical for 
answering real-time queries, but its significance is often short-
lived.  

Variable data rate: The data arrival rate for a stream-based 
application could vary from hundreds to millions of updates per 
second. Additionally, the arrival rate can be unpredictable given 
fluctuations in the sensor update rates or transmission delays. 
Irrespective of the bottlenecks, DSE query processing must be 
robust and aimed towards high throughput. 

While the structure of tuples in a DSE is similar to that of 
relational tuples in a DBS, query evaluation in a DSE is vastly 
different. Since a stream is an unbounded sequence of time-
stamped tuples, query windows are used to generate a finite scope 
for query execution; query windows which partition the stream 
into finite sets of tuples. Under a non-blocking stream processing 
paradigm, a query over streams consists of stream operators 
arranged as a directed acyclic graph (DAG). The operators are 
connected via queues, and each stream operator has an in-memory 
state consisting of any tuples necessary to perform its operation. 
For high throughput, all data is stored exclusively stored in main 
memory, including index structures. Tuples and indices are often 
shared between operators. Stream operators execute in parallel; by 
using techniques like operator cloning, query performance can be 
scaled up without change to the operator graph itself [21].   
Today several commercial DSEs such as Oracle CQL [23, 29], 
Microsoft Streaminsight [1, 2], IBM Infosphere [4], and 
Streambase [27] are available. In most commercial systems, the 
stream option is an extension of the relational DBMS product, and 
libraries that offer spatial support are often available for 
programming stream queries. However, related work shows that 
most existing spatial library functionality was not implemented as 
non-blocking stream operators and instead adheres to the 
traditional disk-based processing paradigm, creating a significant 
performance bottleneck [1, 11, 14]. 

2.2 Extending DSE for continuous 
phenomena 
To monitor continuous phenomena, a very large number of 
individual sensors stream their updates to a DSE. To understand 
the phenomenon, e.g. a field of pollen or radiation deposition, 
users find it more intuitive to interact with a continuous 
representation of the phenomenon instead of individual sensor 
readings.  
We have developed a DSE architecture extension called the 
spatio-temporal continuous phenomena framework (the ST-CPF). 
ST-CPF consists of a scalable, extensible stream operator 
framework that generates a continuous and smooth phenomenon 
representation based on available sensor streams. We make the 
realistic assumption that individual sensors send samples with 
varying update frequency (intra and inter stream variability) and 
are not update synchronized. Additionally, device locations can 
change. The ST-CPF framework processes dynamic phenomena 
such as pollen fields, radiation or air pollution in temporal 
‘portions’ defined by the query window over the input sensor data 
streams. Incoming sensor samples resemble a spatio-temporal 
point cloud, and are cached in a pane-based spatio-temporal grid 
index [28]. ST-CPF also includes stream based implementations 
of a spatio-temporal Inverse Distance Weighting method (ST-

Figure 1 Overview 



 3 

IDW) [15, 28], which takes a spatio-temporal point cloud as input 
to approximate and fill in non-sampled points in space and time. 
Other ST interpolation methods are possible, and the specific 
choice depends on the application needs. To approximate the 
‘reality’ of a phenomenon correctly over time and space within 
the query window, we introduced the concept of an interpolation 
center (IC); the IC is a chosen time stamp within the query 
window and is used to create an approximation of the state of the 
dynamic phenomenon at that particular point in time. Samples 
surrounding the interpolation center both in space and time serve 
as input for ST-IDW to generate a representation of the predicted 
state of the phenomena at that time instant. Updates that are in 
greater temporal distance from the interpolation center have less 
impact than samples collected temporally closer to the 
interpolation center (similar to spatially close samples having 
more weight on the prediction). Thus, we weigh samples based on 
their spatial and temporal nearness. The query result is a 2D grid 
representation of the phenomenon over the specified observation 
region. In real-time monitoring applications, users are mostly 
interested in the latest state of a phenomenon, so the IC is defined 
at the query window end. This has a time decaying effect on the 
weight of older samples (beginning of window).  
While it is useful to generate a representation of the entire field 
for visualization purposes, predicate operator over fields are basic 
operators for continuous analysis of fields.   

3. PREDICATES OVER FIELDS 
In this section we define predicates over fields and discuss the 
challenges of evaluating predicates over dynamic fields. 

3.1 Dynamic fields 
To represent the real-time and dynamic prediction of a continuous 
spatio-temporal phenomenon, the concept of a field provides a 
mathematically defined abstraction [9, 12, 13]. A field is a 
function from each position in the field’s domain to an attribute 
value in the field’s range, i.e. 𝑓:𝑃 → 𝐴. If the position 𝑝 consists 
of a spatial point (𝑥, 𝑦) and a timestamp 𝑡, we call the field a 
dynamic field since it represents the field’s continuous changes 
over space and time. In practical terms, a field 𝑓 allows us to 
retrieve or calculate a value for each location and time in the 
field’s domain. While a mathematic field definition yields an 
appropriate concept to model a geographic entity, once such a 
field is presented on a computer it requires a finite and discrete 
representation. The field consists of a number of preset spatio-
temporal positions, and the requested values for each position are 
calculated based on the available sensor streams combined with 
results from a spatio-temporal interpolation method for all non-
sampled points. Fields allow more flexibility for the calculation of 
predicates over dynamic fields since the resolution can be 
adjusted to the predicate result.  

3.2 Predicates for dynamic fields 
A field predicate is a unary field operator; a Boolean proposition 
is applied to each element of a field’s domain.  

𝑟 = 𝑃!"#!(𝑓) 

We define that the field operator is closed over the set of fields; 
thus, it takes a field 𝑓 as input and yields a field 𝑟 as a result. For 
example the predicate 𝑃!"#$"%&!'%"!! applied to a temperature 
field 𝑓 results in the field 𝑟. How can we define the result field 𝑟? 
Intuitively, 𝑟 should be a temperature field since it is derived from 
a temperature field. Thus, all positions within 𝑟’s domain are 
mapped to values. However, the domain of 𝑟, 𝑑𝑜𝑚(𝑟), is a subset 
of 𝑑𝑜𝑚(𝑓) because it is limited to positions at which the Boolean 

proposition is true. Additionally, 𝑑𝑜𝑚(𝑟) can potentially change 
with each query window evaluation.   
While predicates over space, time and/or values are relevant, in 
this paper we solely focus on the evaluation of predicates over 
values. Such a predicate can be thought of as “find all values that 
meet a certain condition and return a subfield for each query 
window”. For example, take the following query: 

SELECT RASTER(Predicate(ST-IDW(@Grid, s.loc, s.val, @IC), 
@Condition)) as high_radiation_deposition 
FROM sensors s WINDOW 5min  
WHERE s.sensor_type=radiation AND INSIDE(s.loc, @Japan) 

This example stream query requests subfield areas over Japan at 
which a predicate condition is fulfilled; the condition can be that 
the caesium-137 activity concentration at each point is greater 
than 1 Bq/m3 (Becquerel/m3). The predicate is evaluated over a 
raster representation of the field, which is interpolated using ST-
IDW (with given grid size and interpolation center). Each query 
window returns a new raster snapshot of the predicate result, and 
the result field (likely) gradually changes with each snapshot (see 
Figure 2).  
We observe that the actual chosen computer representation of the 
field does have an impact on the accuracy of the predicate. In the 
mathematical (ideal) presentation, changes between neighboring 
values are gradual. Once represented as a grid, cell values can be 
checked against the predicate condition and return true or false. 
Using field representations such as rasters or TINs, the 
representation and its resolution has an impact on the predicate 
result precision. Further, the predicate operator needs to calculate 
the result based on available input point samples and use spatio-
temporal interpolation for the rest of the subfield to actually 
capture correct regions. 

3.3 Incremental evaluation of predicates 
In general, under ST-CPF a predicate is evaluated as follows: first, 
all incoming sensor tuples for a query window are organized by 
space and time into a shared spatio-temporal pane-grid index (for 
detailed information, see [28]); secondly, the predicate is 
evaluated interpolating each cell using ST-IDW with a user-
defined interpolation center. Then, the interpolated value is tested 
to determine if it satisfies the predicate or not. If it does, the cell is 
added to the predicate result set. We use an efficient, adaptive k 
Nearest Neighbor (akNN) based ST-IDW implementation [28]. 
Here, for each interpolated cell, tuples from successively more 
distant cells (distance in both time and space) are used to predict 
the cell value, but when a specified number of tuples have been 
received, the interpolation for the cell is completed. This method 
provides a uniform interpolation result capable of coping with 
irregular sampling distribution and density. A new predicate result 
is returned for each query window, and evaluation is incremental, 
scalable, and adaptive as all operators and data are main memory 
based. 

 
Figure 2  Predicates over dynamic fields 



 4 

In a naïve predicate evaluation algorithm, all cells of the raster are 
interpolated and filtered after the interpolation step. However, an 
efficient evaluation strategy depends on the percentage of the field 
that is part of the predicate result: if a large part of the entire field 
evaluates to true, the naïve algorithm should work well. However, 
if only a relatively small percentage of the field qualifies it is 
more efficient to identify these cells, reduce caching of samples, 
and limit the spatio-temporal interpolation to the result subfields. 
We focus on this case for the remainder of this article but compare 
these algorithms with the naïve algorithm in the performance 
section.  

4. SEED-BASED PREDICATE 
EVALUATION 
While our previous work focused on the continuous query 
processing of high-throughput based ST interpolation of entire 
fields, we focus on the aspect of efficient predicate evaluation 
over small subfields in this paper. Once the set of cells that are 
likely part of the predicate result set is identified, ST-interpolation 
of each cell is similar to our previous work [28]. 

 
Figure 3 Stream operators for predicate evaluation 

4.1 Basis considerations  
A value predicate applied to a geographic phenomenon typically 
retrieves features. For example, the predicate 𝑃!"#$"%&!'%"!!""" 
applied to a temperature field would identify fires within an 
observation region. Characteristically for such features, the sets of 
cells that evaluate to true are spatially and temporally contiguous. 
This fact can be exploited within an evaluation algorithm by 
identifying ‘seeds’ of such regions. By expanding seeds spatially 
and temporally, the algorithm can potentially reduce the search for 
grid cells that need to be checked against the predicate.  
First, ‘seeds’ of such result regions need to be identified. In ST-
CPF the predicate evaluation stream operator graph splits the 
incoming sensor streams updates into two operators: the existing 
grid-pane index builder and the new seed filter (see Figure 3). The 
seed filter checks all incoming tuples based on the predicate 
condition. If a tuple meets the condition the cell in which it is 
located is added to a ‘set of seeds’. Although single tuples may 
meet the predicate condition, it is not clear whether the entire cell 
once interpolated will meet the predicate condition. Their 
participation in the predicate result can only be determined after 
using all available samples in that cell and potentially some 
surrounding cells during ST-interpolation.  
In this predicate evaluation algorithm, organizing seed cells is a 
crucial step towards efficient predicate evaluation. As mentioned, 
seed cells tend to be spatially clustered; however, the incoming 
order of potentially millions of sensor updates is random and 
ordered by time. Filtering tuples based on the predicate condition 
also creates seeds cells in random order. One option is to use a 
data structure that organizes seed cells within a query window 
spatially so that clusters of cells can be derived more easily. A 
candidate data structure is a main memory-based spatial index 
such as a quadtree, since its behavior does not deteriorate under 
such massive update load and tree traversal can identify 

contiguous regions of grid cells that are candidates for 
interpolation. However, the segmentation of quadtrees into 
quadrats and a potential division of candidate regions into 
disconnected quadrants makes identification of relevant regions 
more computationally expensive.  
In our proposed approaches, the data structure for seed cells is 
hashmap keyed on the (x,y) location of each seed, the insertion 
order of cells into the set of seeds follows the random order of 
tuples in the stream. The different methods for ‘expansion’ of 
seed cells into regions representing the predicate result are 
designed to minimize the search and test effort.  

4.2 Alternative 1: Region growing  
The first alternative algorithm is a region-growing algorithm. 
Seed-based region-growing algorithms are common in image 
processing and feature extraction algorithms. Similar to 
predicates, region-growing algorithms traverse a grid and test 
cells based on their value. The difference is that in the case of 
dynamic phenomena, grid cells need to be interpolated before the 
value can be tested. Further, all data stored is main memory and 
performance demands are near real-time. We will discuss two 
different region-growing algorithms: Breadth First (BF) and 
Scanline (SL). 

4.2.1 Breadth First 
Seed Selection: A tuple’s (x,y)  coordinate values are converted to 
integer (x,y) cell coordinate values (center of the cell), and a new 
pair <x,y> containing the new seed coordinates is added to the 
queue of seeds. The seed represents a grid cell containing at least 
one value satisfying the threshold predicate. If the coordinate 
already exists in the set, the new pair is not added. A hashset is 
used, allowing insertion of new coordinates in constant time given 
an appropriate hash function.  

 
Figure 4 Region growing breadth first predicate evaluation 
Seed Expansion: Seed expansion operators are candidates for 
operator cloning, as all seed expansion operators fetch seed cells 
from the same queue, but maintain their own internal cell 
candidate queues (see Figure 4). An index is shared between all 
parallel cell expansion operators; this index keeps track of 
whether cells have been tagged for expansion or not, avoiding 
duplicated efforts among different operator threads. Each 
individual seed expansion operator performs as follows:  
A seed expansion operator fetches a seed cell from the seed 
queue, and grows an expanding region based on the seed. Region 
growing is continued as long as the predicate is satisfied. The 
region-growing algorithm is a breadth first search, but without the 
termination condition of finding a particular item. Instead, we 
added the requirement that the predicate is satisfied for a cell 
before neighbors are added to the queue. The breadth first 
algorithm interpolates the seed cell’s value and if it satisfies the 
predicate, the cell is expanded. This means that four of its 
neighboring cells (north, east, south, and west) are added to its 
own “candidate cell” queue for this region. Before cells are added 
to the queue, the operator checks whether the cell has already 
been tagged for expansion in any of the other operator threads. 



 5 

Next, the head of the candidate cell queue is fetched, interpolated 
and conditionally expanded, and so on. The algorithm terminates 
once the internal candidate cell list is empty, and then a new seed 
is fetched from the seed cell queue and the process continues.  

4.2.2 Scanline 
The Scanline algorithm is an alternative seed based region growth 
algorithm; it can be visualized as starting from a seed cell to 
traversing a line in a raster to find relevant neighbors. In image 
processing, each cell’s values are known. This is not true for our 
filter based predicate evaluation process, in which cells have to be 
interpolated before they can be tested. 
Seed Selection: Identical to Breadth First (see 4.2.1) 

Seed Expansion: The basic idea of the Scanline is as follows: 
Fetch a seed from the seed queue. Then, start by filling the current 
‘scanline’ in which the seed is located, i.e. proceed along the cells 
to the right of the seed in the current row: interpolate each cell and 
test if it satisfies the predicate. If so, visit the next cell to the right. 
Once a cell with a value that does not meet the predicate is 
encountered, the algorithm jumps to one of the lines that are 
vertically adjacent (upper or lower) and continues. Again, the 
algorithm tests all cells until it reaches the other side of the row, 
and then again jumps. This is repeated until the connected region 
is fully filled. Compared to the basic Breadth First algorithm, 
which searches in four directions, we mark the cells satisfying the 
threshold by traversing line sections. 

4.3 Alternative 2: Tile expansion 
If a grid is very large or has a high resolution, the identification of 
cells that are potentially elements of the predicate result 
individually through search can lead to substantial computational 
effort. In order to limit the steps of region growing, we explored 
using larger tiles as a basic test object to expand. A tile is a set of 
cells with equal width and height (e.g. 2x2 or 4x4 cells). The 
entire observation region is partitioned into equal-sized tiles, and 
if a candidate tuple is found in a tile, all cells of this tile are 
selected as candidates for ST-interpolation. Overall the purpose of 
tile expansion is to locate all (and likely more) grid cells that, after 
interpolation, will be an element of the predicate result. Tiles 
expansion is a rough, but fast estimate of such cells. 
Tile expansion consists of an initial seed tile selection phase, and 
a seed expansion phase.  Seed tiles are tiles with cells that contain 
seed tuples; expanded tiles are all neighboring tiles of seed tiles. 
The motivation for tile expansion is as follows: assume a seed 
tuple ts exists in a corner cell ci of tile Tj. It is possible that ts will 
influence the interpolated value of grid cell cn, which is a neighbor 
cell of ci but located outside of tile Tj. Cell cn might not have seed 
tuples itself. Therefore, seed tiles need to be expanded. Another 
consideration is tile size. If the tile size is large, the percentage of 
irrelevant cells being interpolated likely is larger. Choosing a 
small tiles size, however, will increase the memory and 
computational cost for the algorithm. Further, a dependency 
between tile size and chosen interpolation radius for the ST-
interpolation method exists. If the interpolation radius r=16 (i.e. 
16 cells in distance from center cell), choosing a tile size that is a 
multiple of 2 is advantageous (e.g. 2, 4, 8 or 16). The steps of tile 
expansion are as follows: 
Seed selection: During the filtering of incoming streams, tuples 
are tested based on their value, and a passing tuple’s (x,y) 
coordinate values are converted to tile coordinates. A new 
coordinate pair containing the tile coordinates is added to the set 
of seed tiles. If the tile already exists in the set, the new pair is not 
added. As with the breadth-first region-growing approach, a 
hashmap is used to index tiles and prevent duplicates. Tile 
identification is run as a single thread, and runs through all 

candidate tuples for a query window. The result is a set of unique 
tiles.  
Expansion of seed tiles: Next, a new set of expanded tiles is 
created. The expansion operator iterates through the set of seed 
tiles and each seed tile is added to the set of expanded tiles along 
with all tiles within a square defined by the interpolation radius 
around the perimeter of the tile. The seed tile expansion 
guarantees that all cells that potentially have an interpolated value 
satisfying the predicate, since they are neighboring tiles within the 
interpolation radius of seed cells, will be interpolated. However, 
this ‘overshooting’ of cell selection comes at the cost of queueing 
cells that likely will not satisfy the predicate.   
Conversion of expanded tiles to cells: The set of expanded tiles is 
converted into individual grid cells, which are queued for ST-
IDW. In all cases the complexity for this is O(n*(r/s)^2) where n 
is the number of expanded tiles, r is the interpolation radius, and s 
is the number of tiles in a distance of r. 

4.4  Discussion 
Overall, the performance of the selected algorithms depends on 
the following components: indexing of raw tuples, filtering, seed 
selection, and seed expansion with interpolation (either by region 
growing or tile expansion), and interpolation. The cost for 
indexing raw tuples and filtering is O(d) (d, number of tuples). 
The cost for seed expansion in the region-growing approach has 
the following behavior: grid cells are arranged in a graph, in 
which each seed cell has four direct neighbors, which are visited. 
In the worst case, the entire observation region is part of the 
predicate result, and every edge in the graph has to be traversed. 
In Breadth First, all four neighbors are checked for each cell. In 
Scanline, often only a single neighbor is checked, but in both 
cases in the worst case all cells are interpolated. The time 
complexity for seed expansion using Breadth First is O(|E|), where 
the number of edges in the graph is |E|=2mn-m-n, m and n being 
the width and height of the grid. The space complexity is O(|V|), 
where |V|=mn is the number of cells in the grid. Overall, the cost 
is determined by the interpolation cost and grid size, and depends 
linearly on the number of tuples.  

5. PHENOMENON-AWARE PREDICATE 
EVALUATION 
We observe that predicate operators over dynamic phenomena 
that deliver predicate results continuously capture the incremental 
change of the phenomenon over time and space. For predicate 
evaluation, this indicates that we can exploit knowledge from a 
previous query window ti-1 during evaluation of the current 
window ti and thus, limit the search for cells that are elements of 
the predicate result set. In the related work, this type of evaluation 
is named incremental stream query evaluation, i.e. the result of a 
new query window is built based on the result of the previous 
window, and new incoming tuples are individually added while 
outdated tuples are deducted, and the result is computed. This 
avoids re-computing the entire result from scratch.  

5.1 Rationale 
The phenomenon-aware predicate evaluation approach is based on 
tiles (Section 4.3). The motivation for tiles is to create a rough 
identification of the cells that are elements of the predicate 
operator. The observation region is partitioned into equal-sized 
tiles, and a tile ‘mask’ is created. Depicting the predicate result of 
window ti-1, the result region(s) are contained in a set of tiles (see 
Figure 5, all blue tiles). We classify tiles into the following types: 
Interior tiles: an interior tile contains only cells that fulfilled the 
predicate in ti-1. Interior tiles contain cells that are most likely also 
part of the result of window ti.  



 6 

Boundary tiles: A boundary tile consists of both cells that fulfilled 
the predicate during ti-1 and cells that did not fulfill the predicate 
in the previous window. Boundary tiles capture areas that are 
likely to change from query window ti-1 to ti.  
Exterior tiles: exterior tiles contain only cells that did not fulfill 
the predicate in ti-1. Exterior tiles might still be of the same types 
in window ti, but new regions might emerge.  
Based on the tile classification, a strategy for tile expansion is 
selected: interior tiles do not need to be expanded, boundary tiles 
are expanded in certain cases, and exterior tiles are only expanded 
if they contain new seeds that did not exist in ti-1. In principle, the 
algorithm only considers tiles with ‘change’ potential through 
expansion and testing of the surrounding region, prunes areas that 
do not qualify, and re-interpolating regions that are still central to 
the predicate. 

 
 

Figure 5 Tiles classification based on the ti-1 query window  

 
Figure 6 Tile classification and expansion based on new seeds  

5.2 Classifying tiles 
The phenomenon-aware predicate evaluation algorithm receives 
the following input: a) a queue of all interpolated cells of window 
ti-1, including cells that are not part of the result set but were 
interpolated nevertheless, b) a tile mask in which each tile is 
marked as being in one of four states: No Data, Interior, Boundary 
or Exterior, and c) a queue of all seed tuples for ti. 
Tile classifier: Initially, all tiles are in the state “No Data”. First, 
the operator consumes a queue element of its input queue, i.e. all 
interpolated cells from ti-1. Based on a cell’s location, the 
appropriate tile is identified, and based on the cell’s value the tile 

is reclassified as Interior (if the cell’s value fulfills the predicate), 
or Exterior (if the cell’s value does not meet the predicate). If a 
cell arrives that does not meet the predicate but falls into a tile that 
has already been classified as Interior, the tile is reclassified as 
Boundary tile. After the cell queue is empty, all tiles are tagged  
Interior, Boundary, Exterior or No Data. No Data tiles are 
possible since the predicate result set is a subset of the entire 
region (see Figure 5). 

5.3 Expansion of tiles types 
In the next step, the queue of new seed tuples, which arrived 
during ti is processed, and the tiles are reclassified (see Figure 6, 
red dots). If a seed is identified within an interior tile, the tile 
status does not change since all cells of the tiles will be 
interpolated in any case (Figure 6, tile A). If a new seed is located 
within a boundary tile, the boundary tile is marked for expansion 
(Figure 6, tile C). The new seed indicates that the predicate result 
region likely has grown within this tile, thus neighboring tiles 
should be considered. If a seed falls into an Exterior tile, the 
Exterior tile is marked for expansion and handled like an initial 
seed tile (expanding to neighboring tiles) (Figure 6, tile B). If a 
seed falls into a No Data tile, the tile is reclassified as Exterior, 
and marked for expansion. 
At the end of this phase, all tiles are marked as Interior, 
Boundary/NotExpand, Boundary/Expand, Exterior/Expand, 
Exterior and No Data. At this time the Exterior and No Data tiles 
are pruned and not further considered. The cells of the Interior 
and Boundary/NotExpand tiles are inserted directly into the output 
queue for cell interpolation. Boundary/Expand and 
Exterior/Expand tiles are expanded first to their neighboring tiles; 
cells of all expanded tiles are then inserted into the output queue 
for the ST-interpolation operator.  

6. PERFORMANCE EVALUATION 

6.1 Experimental setup 
Since sensor data streams of high density, both spatially and 
temporally, are not available (yet) for the system we envision, we 
simulated sensors moving along a dense (Cambridge) and a sparse 
street network (one third of Japan around the 2011 Fukushima 
nuclear incident). The discussed strategies were implemented as 
data stream components assuming a DSE environment. 

6.1.1 Data sets 
To generate high-density data streams, a simulation of sensor 
streams in NetLogo [20] was created. The movement of sensor 
nodes is constrained to links in a street network. We implemented 
two street networks; one is a large portion of Japan and the other 
is a small part of the Cambridge and Boston, MA area. As 
phenomenon, we use the measured and estimated radiation 
deposition levels in Japan after the Fukushima Daiichi nuclear 
disaster in March 2011. The predicted radiation levels were 
calculated in R using data from ZAMG [30] and SPEEDI [6].  
The simulation loops through a sequence of snapshots of the event 
between the 1st and 5th day after the disaster in 15-minute 
increments. Each increment is represented as a ‘tick’ in Netlogo, 
and a query window is defined over 4 ticks. In a realistic system, 
we would expect each tick to correspond to 15 seconds or less. 
The simulated sensors on the street networks sample the 
phenomenon and write observations to a text file. The data sets 
were generated for a simulated sensor population of 256K that 
sampled at each tick. 



 7 

6.1.2  Implementation und Runtime Environment 
The algorithms are implemented in Java in a limited DSE 
environment; operators are connected via queues, and work in a 
pipelined fashion, but we do not consider any of the other DSE 
components (e.g. adaptive resource optimization, etc.). The 
experiments were run on a Mac Pro (Model MacPro6.1) with a 
3.5 GHz Intel Xeon E5 (six physical processing cores and 12 
virtual cores), 16 GB DDR3 ECC memory at 1867 MHz, and Mac 
OS X 10.9.4 (13E28) (64 bit), and Java 1.7.0_60 (64 bit). Tests 
were run with the heap size configured to an initial and maximum 
size of 4 GB in order to buffer the entire input stream in memory. 

6.2 Parameters used based on previous work 
For the following tests a sliding window with a range of 4 ticks 
(no slide, tumbling window) was selected. Tests were run with ten 
iterations of five consecutive windows over both the Cambridge 
and Japan data sets. The data set is composed of simulated sensor 
observations with 256K sensors, each of which has a 25% 
probability of updating for a particular tick (i.e. on average each 
sensor updates at one point in the window). A 512x512 grid was 
used. In previous work [28], we developed two methods that 
determine surrounding tuples that are needed to interpolate the 
value of a cell. The akNN algorithm dynamically increases the 
search radius, both in space and time, around the cell to be 
interpolated until it has found k samples. The alternate Virtual 
List (VL) approach uses a fixed spatial search radius r, and all 
samples in the search radius are used as input for interpolation. 
Based on previous results [28], we have established that the 
adaptive kNN based ST-IDW has better performance in all cases 
(uniform and skewed sampling distribution). Therefore, for most 
performance results we show only the akNN results, but some 
results for VL are included for comparison.  

For akNN, parameter k was set to 4. The interpolation center is at 
the end of the query window and a single snapshot of the 
predicate result is created. The pipelined stream query execution 
was run as follows: one indexing thread, one seed selection and 
expansion thread, and eight interpolation threads. Timing was 
done using mutual exclusion between the indexing and seed 
expansion operators, where applicable, to give consistent timing 
results, although they normally would run in parallel. Total 
runtime was calculated as:  Runtime=Slowest(AVG(index-time), 
AVG(seed-time)) + AVG(Slowest (IDW1... IDW8)).  
We tested the all methods with predicate settings that returned 
different sized results. The predicate result size was quantified as 
the proportion of number of cells of predicate result compared to 
number of cells of entire observation region. We tested the 
following cases: small (10%), medium (28%), and large (38%).  

6.3 Naïve vs. region growing algorithms 
First, we compared the performance of the naïve method (Naïve) 
to the region growing algorithms, i.e. Breadth First (BF) and 
Scanline (SL) (Figure 7). In the naive method all cells of the 
entire observation region are interpolated and predicate evaluation 
was performed after interpolation. The region growing algorithms 
start by filtering tuples and expanding seed cells. We tested the 
naïve and region growing methods for determining the predicate 
result in combination with the akNN (top 3 graphs in Figure 7) 
and VL algorithms (lower 3 graphs) used for interpolation. 
Further, we tested three different predicate result sizes. The results 
for VL show that both BF and SL have almost identical 
performance as expected; they are significantly faster and scale 
much better with increasing number of observations compared to 
Naïve. The interesting observation is that SL performs 
significantly faster than BF when combined with the akNN 
algorithm (top 3 graphs). This is due to exploiting the high-speed 
caching as a linear traversal during interpolation results in most of 

Figure 7  Region growing-based algorithms with akNN and Virtual List (VL) 



 8 

the data needed to interpolate the current grid cells was already 
loaded into the cache hierarchy when interpolating the previous 
cell.  
Overall, the region growing algorithms perform better than Naïve 
for akNN. We also observe that the runtime initially decreases 
with increasing number of observations since the search can be 
reduced to fewer cells in akNN. However, the performance 
decreased again once the set of observation reaches about 128K 
samples/window as expected. Comparing akNN and VL, the 
akNN version is significantly faster than VL (e.g., runtime 
between 0.14-0.2s for akNN/SL, medium result size compared to 
0.8-2s for VL/SL, medium result size).  

6.4 Tile expansion 
We tested the performance behavior of the tile expansion 
approach. This approach is expected to behave more greedily and 
faster in identifying areas that are part of the predicate result 
instead of exploring the region cell by cell. Tile sizes tested were 
S1=2x2, S2=4x4, S3=8x8, and S4=16x16. The history-unaware tile 
expansion approach only uses the seeds from the current window 
while the history-aware, informed approach (Section 5) uses the 
information about the extent of the phenomenon gleaned from the 
last interpolation step (the comparison is discussed in Section 
6.5). The results for tile size impact are shown in Figure 8. As 
expected, the uninformed tile expansion algorithm with tile size 2 
performs best if the predicate result is small, and worst if the 
predicate result size reaches 38% of the overall region. Tile size 
16 shows slower performance than other methods in most cases. 
Tile sizes 4 and 8 show good performance on average. A tile size 
of four is the best choice for consistently good performance for 
akNN for both Cambridge and Japan and all three phenomena 
sizes.   

6.5 Comparison of all methods 
Figure 9 shows a comparison of all tested methods: Region 
growing (Breadth First and Scanline), tile expansion (informed 
and uninformed), and naïve. For tile expansion methods, the 
graphs for the same tile size have the same color (e.g. tile size 16 
is green for both informed and uninformed), the informed tiles 
methods are dashed lines, while the uninformed tiles method 
results are solid lines. We show results for the Cambridge, MA 
and Japan areas. The difference between the datasets is that 
Cambridge is sampled via a dense road network, which results in 
spatially uniform sampling, while the Japan region has sampling 
skewed towards the a sparse road network.  
For the VL tests (lower 2 graphs of Figure 9), results confirm that 
the Naïve method has the longest runtime, while the region 

growing methods has the best performance compared to the tile 
based and the naïve approaches, both over Cambridge and Japan. 
The tile-based approach behaves almost identically for tile sizes 2, 
4, and 8, with a large tile size (16) decidedly slower than smaller 
tiles sizes. 
For akNN (top two graphs of Figure 9), we can see that SL 
outperforms all other methods by a large margin. The results also 
show that the informed, phenomenon-aware tile based approach is 
consistently more efficient than the uninformed tile approach for 
tiles size 2, 4 and 8, but worse in performance for tile size 16. We 
conclude that incremental query evaluation for predicates over 
spatio-temporal fields is beneficial. However, using Scanline in 
combination with akNN was the best option given the 
characteristics of the test cases.  

7. RELATED WORK 
With regard to spatio-temporal applications, DSEs have mostly 
been used for handling sensor data streams that represent moving 
point-based objects like vehicles or people in real-time or RFID 
scanning [16–18, 26]. Our work of developing a DSE framework 
to monitor phenomena that are continuous over both space and 
time in real-time is currently unique [22, 28]. When monitoring 
moving objects, location is the measurand and object trajectories 
are interpolated over space and time. Predicates are posed over 
those trajectories, and are categorized into range queries (e.g. 
“which cars crossed region A in the last 10 min”), kNN queries 
(e.g. “which are the k nearest neighbors of each car during the last 
window”), or aggregate kNN queries (e.g. “which are the cars 
with minimum aggregate distance from object A during the last 
window”) [8]. When monitoring fields, predicates over the 
thematic values are of significant interest (e.g. “find all regions 
where the temperature is above 110°F in the last window”, “find 
all regions where the temperature increases by more than 3°F over 
each consecutive window”).  Typically, fields are analyzed with a 
large set of other spatial analysis operators [7] but spatio-temporal 
analysis operators are less common today. Currently, pipelined 
stream based implementations [11] of these operators necessary 
for efficient execution with DSEs are not yet available. Our work 
in this paper is a first investigation into the foundation of 
evaluating predicates over ST-continuous phenomena with DSEs.  
Compared to moving objects, which can be represented as points 
distributed over space, fields have a spatially continuous aspect, 
and generating a continuous representation based on potentially 
moving sensor stations with point-based samples is a crucial first 
step. This characteristic also has a significant impact on predicate 
evaluation. 

Figure 8 Tile-based expansion 



 9 

Important investigations and contributions in the area of 
pipelined, stream-based query operators and plans have been 
made on the topic of spatio-temporal predicates over moving 
objects, notably in Place [17], SINA [16], Nile [10], CAPE [26] 
and others. A summary can be found in [8]. The key characteristic 
for spatio-temporal stream queries is that often in-memory spatial 
index structures are used to index incoming tuples/window to 
evaluate spatial queries faster. Building pipelined query operators 
and plans that can be parallelized and evaluated incrementally has 
been one of the major challenges [8]. In moving object queries, 
the trajectory information of objects is of interest and has to be 
maintained for queries across query windows, but in continuous 
phenomena queries the challenge is to continuously create 
updated presentations over the entire phenomenon or a large 
enough portion as a basis to evaluate predicates correctly. The 
presented work is a first investigation into the foundation of 
evaluating predicates over continuous phenomena with DSEs. 

8. CONCLUSIONS AND FUTURE WORK 
Technological advances have created an unprecedented 
availability of inexpensive sensors able to stream environmental 
data in real-time for which we still seek appropriate data 
management technology that can keep up with this onslaught of 
sampling in previously unavailable spatial and temporal density. 

In previous work we have shown that DSEs can be extended to 
generate smooth representations of continuous spatio-temporal 
fields sampled by up to 250K sensors on-the-fly in near real-time, 
creating a new representation every second. In this paper we have 
investigated a spatio-temporal stream operator framework that 
efficiently executes predicate operators over spatio-temporal 
fields. We introduced a definition of predicates over dynamic 
fields, analyzed requirements for stream query evaluation and 
presented several pipelined stream based query operators 
algorithms. The work is based on the assumption that it is more 
efficient to find ‘seeds’ of regions that are part of the predicate 
result and expand them into the complete predicate result regions 
instead of interpolating the entire continuous phenomenon first, 
and filtering all cells based on the predicate condition. We 
investigated different seed expansion algorithms (Breadth First 
and Scanline region growing, and tile expansion) as well as 
exploring the impact of using the knowledge of the previous 
window query result. Our analysis and performance results show 
that both region growing algorithms perform best for all data set 
sizes and characteristics; tile-based approaches are efficient for 
tiles sizes 4x4 and 8x8. History-aware tile expansion performs 
better if the phenomenon changes slowly (as expected). Future 
work will include investigating adaptive query evaluation using 

Figure 9  Summary 



 10 

the different algorithms based on the changing phenomenon 
characteristics.  

Acknowledgements 
The authors would like to thank Christopher Dorr for his valuable 
input to this paper. 

REFERENCES 
[1] Ali, M. et al. 2010. Real-time spatio-temporal analytics 

using Microsoft StreamInsight. Proceedings of the 18th 
SIGSPATIAL International Conference on Advances in 
Geographic Information Systems - GIS ’10 (New York, 
New York, USA, 2010), 542–543. 

[2] Ali, M. et al. 2011. The extensibility framework in 
Microsoft StreamInsight. 2011 IEEE 27th International 
Conference on Data Engineering (Apr. 2011), 1242–
1253. 

[3] Arasu, A. et al. 2005. The CQL continuous query 
language: semantic foundations and query execution. The 
VLDB Journal. 15, 2 (Jul. 2005), 121–142. 

[4] Biem, A. et al. 2010. IBM InfoSphere Streams for 
Scalable, Real-Time, Intelligent Transportation Services. 
SIGMOD ’10: Proceedings of the 2010 ACM SIGMOD 
International Conference on Management of Data 
(Indianapolis, IN, 2010), 1093–1103. 

[5] Campbell, A.T. et al. 2008. The Rise of People-Centric 
Sensing. IEEE Internet Computing (Jul. 2008), 30–39. 

[6] Chino, M. et al. 1993. SPEEDI and WSPEEDI: Japanese 
Emergency Response Systems to Predict Radiological 
Impacts in Local and Workplace Areas due to a Nuclear 
Accident. Oxford JournalsMathematics & Physical 
Sciences Radiation Protection Dosimetry. 50, 2 (1993), 
145–152. 

[7] Chrisman, N. 1999. A transformational approach to GIS 
operations. International Journal of Geographical 
Information Science. 13, 7 (1999). 

[8] Elmongui, H.G. et al. 2006. Challenges in Spatio-
temporal Stream Query Optimization. MobiDE ’06 
Proceedings of the 5th ACM international workshop on 
Data engineering for wireless and mobile access (2006), 
27–34. 

[9] Galton, A. and Worboys, M. 2005. Processes and Events 
in Dynamic Geo-Networks. GeoSpatial Semantics. M.A. 
Rodríguez et al., eds. Springer LNCS 3799. 45–59. 

[10] Hammad, M.A. et al. 2004. Nile: A query processing 
engine for data streams. Proceedings of 20th 
International Conference on (2004), 851. 

[11] Kazemitabar, S. et al. 2010. Geospatial stream query 
processing using Microsoft SQL Server StreamInsight. 
Proceedings of the VLDB Endowment. 3, 1-2 (2010), 
1537–1540. 

[12] Kemp, K.K. 1996. Fields as a framework for integrating 
GIS and environmental process models. Part 1: 
Representing spatial continuity. Transactions in GIS. 1, 3 
(1996), pp 219–234. 

[13] Kemp, K.K. et al. 1998. Towards an ontology of fields. 
Geocomputation (1998), 1–6. 

[14] Miller, J. et al. 2011. An Extensibility Approach for 
Spatio-temporal Stream Processing using Microsoft 
StreamInsight. SSTD’11: Proceedings of the 12th 

international conference on Advances in spatial and 
temporal databases (2011), 496–501. 

[15] Mitas, L. and Mitasova, H. 1999. Spatial interpolation. 
Geographical Information Systems: Principles, 
Techniques, Management and Applications. P. Longley 
et al., eds. Wiley. 481–492. 

[16] Mokbel, M. et al. 2004. SINA: Scalable incremental 
processing of continuous queries in spatio-temporal 
databases. SIGMOD ’04: Proceedings of the 2004 ACM 
SIGMOD International Conference on Management of 
Data (2004), 623–634. 

[17] Mokbel, M.F. et al. 2005. Continuous Query Processing 
of Spatio-Temporal Data Streams in PLACE. 
GeoInformatica. 9, 4 (Nov. 2005), 343–365. 

[18] Mokbel, M.F. and Aref, W.G. 2007. SOLE: scalable on-
line execution of continuous queries on spatio-temporal 
data streams. The VLDB Journal. 17, 5 (Apr. 2007), 971–
995. 

[19] Murty, R.N. et al. 2008. CitySense: An Urban-Scale 
Wireless Sensor Network and Testbed. 2008 IEEE 
Conference on Technologies for Homeland Security. 
(May 2008), 583–588. 

[20] Netlogo Home Page: 2014. . 
[21] Ng, K. et al. 1999. Dynamic Query Re-Optimization. 

SSDBM ’99 Proceedings of the 11th International 
Conference on Scientific and Statistical Database 
Management (1999). 

[22] Nittel, S. et al. 2012. Real-time spatial interpolation of 
continuous phenomena using mobile sensor data streams. 
Proceedings of the 20th International Conference 
SIGSPATIAL ’12 (New York, New York, USA, 2012), 
530. 

[23] Oracle, A. and Paper, W. 2008. Oracle Complex Event 
Processing Performance Oracle Complex Event 
Processing Performance. November (2008). 

[24] Paulos, E. et al. 2008. Citizen science: Enabling 
participatory urbanism. Urban Informatics: community 
Integration and Implementation. 1–16. 

[25] Resch, B. et al. 2009. Real-Time Geo-awareness � 
Sensor Data Integration for Environmental Monitoring in 
the City. 2009 International Conference on Advanced 
Geographic Information Systems & Web Services (Feb. 
2009), 92–97. 

[26] Rundensteiner, E.A. et al. 2005. CAPE: A constraint-
aware adaptive stream processing engine. Stream Data 
Management, Advanced in Database Systems. N. 
Chaudhry et al., eds. Springer Berlin Heidelberg. 

[27] StreamBase 2012. StreamSQL online documentation. 
[28] Whittier, J.C. et al. 2013. Towards Window Stream 

Queries over Continuous Phenomena. Conf Proc of 4th 
International Workshop on “Geostreaming”, in 
conjunction with SIGSPATIAL (Orlando, FL, 2013), 1–
10. 

[29] Witkowski, A. et al. 2007. Continuous queries in Oracle. 
VLDB ’07 Proceedings of the 33rd International 
Conference on Very Large Data Bases. (2007), 1173–
1184. 

[30] Wotawa, G. and Skomorowski, P. 2012. Long-range 
transport of particulate radionuclides from the Fukushima 
NPP accident: sensitivity analysis for wet deposition. 
EGU General Assembly 2012 (Vienna, Austria, 2012), 
10494.  

 


