SIE 504: The Beauty and Joy of Computing

School of Computing and Information Science, University of Maine

Contact Information

Constance C. Holden Professor of Developmental Math & Science University of Maine at Augusta

Adjunct Professor of Spatial Information Science & Engineering University of Maine

Email: <u>cholden@maine.edu</u> Phone: 262-7894

Office Hours TBA

Course Description

This is an introductory course in computer science designed to prepare students with the skills and knowledge necessary to teach the first Advanced Placement (AP) course "Computer Science Principles", but will also be useful for students wishing to integrate computer science concepts into other academic disciplines. The course covers the AP Principles Framework and Computational Thinking Practices.

Credits 3

Course Objectives

- Develop computational thinking strategies and the student's ability to analyze problems.
- Develop an understanding of how computers work, and some of the "big ideas" in computer science such as: abstraction, data, algorithms and the social impacts of the technology.
- Develop skill in a visual programming language.
- Prepare the students to teach the AP course "Computer Science Principles".

Learning Outcomes

Upon successful completion of the course, students will be able to:

- Discuss the social implications of technology.
- Explain how data is stored and manipulated.
- Explain the roll of operating systems in managing and interacting with the computer.
- Write computer programs including conditionals, iteration, recursion and lists
- Describe ways computer networks are used to communicate and share resources and facilitate web processing
- Integrate computer programming into their classroom.

Course Outline

This course will consist of video lectures, readings and programing activities.

Primary Resources

- Snap! (snap.brekeley.edu/run)
- Beauty and Joy of Computing Curriculum (bjc.edc.org)
- *Computer Science Illuminated*, (7th Ed) ,Lewis, J. & Dale, N. 2019, Jones & Bartlett Learning ISBN: 9781284155648

Course Schedule

	Text Material	Programming Activities
Week 1	Exploring "Unplugged Activities" Laying the Groundwork - Ch. 1	Computer Science Unplugged, https://csunplugged.org/en/
Week 2 & 3	An Introduction to Programming - Ch. 6 & 7	Getting started with Snap and Creating your first App.
Week 4	An Introduction to Programming (cont.) - Ch. 8 & 9	Improving Your App with Variables
Week 5 & 6	Data Storage and Representation – Ch. 2 & 3	Data Processing and Lists
Week 7 & 8	Operating Systems – Ch. 10 & 11	Algorithms and Simulations
Week 9 & 10	Applications – Ch. 12 - 13	Fractals a & Recursion
Week 11	Applications (cont.) Ch. 14	Recursive Functions
Week 12	Networks and the Web – Ch. 15 & 16	Project work
Week 13	Computer Security – Ch. 17	Project work
Week 14	Limitations of Computing – Ch. 18	Project work
Week 15	Final Exam	Project Due

Grading

Homework (40%)

Programming assignments will be due on a weekly basis until week 12. Students will be encouraged to work together to solve problems, but the work submitted must be the student's own. Late assignments will be penalized 3 points per day.

Project (40%)

Each student will be assigned a programming project to be completed on or before the scheduled final exam. The project will include both a programming and non-programming component.

Final Exam (20%)

This will be based on the lecture and the assigned readings.

Campus Policies

Student Accessibility Services Statement: https://umaine.edu/scis/notices/#disability

Academic Honesty Statement: https://umaine.edu/scis/notices/#honesty

Nondiscrimination Notice: https://umaine.edu/scis/notices/#nondiscrm

Student Conduct Code: https://umaine.edu/scis/notices/#code

Classroom Civility https://umaine.edu/scis/notices/#civility

Sexual Discrimination Reporting: https://umaine.edu/scis/notices/#sexdiscrm

Course Schedule Disclaimer: https://umaine.edu/scis/notices/#disclaimer

Epidemic Contingency Plan: https://umaine.edu/scis/notices/#epidemic

Copyright Notice for Website Material https://umaine.edu/scis/notices/#copyright