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An important issue in qualitative spatial reasoning is the representation of relative
directions. In this paper we present simple geometric rules that enable reasoning about
the relative direction between oriented points. This framework, the oriented point algebra
O P R Am , has a scalable granularity m. We develop a simple algorithm for computing
the O P R Am composition tables and prove its correctness. Using a composition table,
algebraic closure for a set of O P R Am statements is very useful for solving spatial
navigation tasks. It turns out that scalable granularity is useful in these navigation tasks.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

The concept of qualitative space can be characterized by the following quotation from Galton [8]:

The divisions of qualitative space correspond to salient discontinuities in our apprehension of quantitative space.

If qualitative spatial divisions serve as knowledge representation in a reasoning system, deductive inferences can be realized
as constraint-based reasoning [23]. An important issue in such qualitative spatial reasoning systems is the representation
of relative direction [1,6,9]. Qualitative spatial constraint calculi typically store their spatial knowledge in a composition
table [23]. For a recent overview about qualitative spatial reasoning (QSR) we refer to Renz and Nebel [23].

A new qualitative spatial reasoning calculus about relative direction, the oriented point algebra O P RAm , which has
a scalable granularity with parameter m ∈ N, was presented in [15]. The motivation for this scalable granularity was that
representing relatively fine distinctions was expected to be useful in more complex navigation tasks. It turned out to be
difficult to analyze the reasoning rules for this calculus: the algorithm for computing composition tables presented in the
original paper [15] contained gaps and errors. The correct and complete algorithm presented in [7] is quite lengthy and
cumbersome: it is based on a complicated case distinction with dozens of cases (the paper is 29 pages long, 22 of which
are devoted to the algorithm and its correctness). We give a very short (15 lines) algorithm that is both correct and simpler
than the two existing algorithms. Moreover, it much better illustrates its goal, and we expect that it can be adapted and
re-used for other similar calculi as well.

This paper is organized as follows: we will first give a short overview of the O P RAm calculus. We start this with
a definition for a coarse type (m = 2), followed by the model for arbitrary m ∈ N. Then we will present a new compact
algorithm which performs O P RAm reasoning based on simple geometric rules, and prove its correctness. At the end we
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Fig. 1. An oriented point and its qualitative spatial relative directions.

Fig. 2. Qualitative spatial relation between two oriented points at different positions. The qualitative spatial relation depicted here is A lf
rf B .

give an overview of several applications that use the O P RAm calculus for spatial navigation simulations and discuss the
adequateness of specific choices for the granularity parameter m.

2. The oriented point algebra

Objects and locations can be represented as simple, featureless points. In contrast, the O P RAm calculus uses more
complex basic entities: It is based on objects which are represented as oriented points. It is related to a calculus which is
based on straight line segments (dipoles) [19]. Conceptually, the oriented points can be viewed as a transition from oriented
line segments with concrete length to line segments with infinitely small length [17]. In this conceptualization the length
of the objects no longer has any importance. Thus, only the orientation of the objects is modeled. An o-point, our term for
an oriented point, is specified by a pair: a point and an orientation in the 2D-plane.

2.1. Qualitative o-point relations

In a coarse representation a single o-point induces the sectors depicted in Fig. 1. “front,” “back,” “left,” and “right”
are linear sectors; “left-front,” “right-front,” “left-back,” and “right-back” are quadrants. The position of the point itself is
denoted as “same.” This qualitative granularity corresponds to Freksa’s single and double cross calculi [6,24].

In O P RA2, for the general case where the two points have different positions, we use the following relation symbols
(the abbreviations lf, lb, rb, rf stand for “left-front,” “left-back,” “right-back,” and “right-front,” respectively):

front
front , lf

front , left
front , lb

front , back
front , rb

front , right
front , rf

front , front
lf , lf

lf , . . . , rf
rf .

Here, a qualitative spatial relative direction relation between two o-points is represented by two pieces of information:

• the sector (seen from the first o-point) in which the second o-point lies (this determines the lower part of the relation
symbol), and

• the sector (seen from the second o-point) in which the first o-point lies (this determines the upper part of the relation
symbol).

The relations symbols are pairs of symbols which are written as stacked pairs. The sector name for the sector in which
the second o-point position is located from the perspective of the first o-point is the lower part of the relation symbol.
Conversely, the perspective from the second o-point generates the symbol put atop the first one. Altogether we obtain 8 × 8
base relations for the two points having different positions.

Then the configuration shown in Fig. 2 is expressed by the relation A lf
rf B . If both points share the same position, the

lower relation symbol part is the word “same” and the upper part denotes the direction of the second o-point with respect
to the first one, as shown in Fig. 3.

Altogether we obtain 72 different atomic relations (eight times eight general relations plus eight with the o-points at the
same position). These relations are jointly exhaustive and pairwise disjoint (JEPD). The relation front

same is the identity relation.

2.2. Qualitative spatial reasoning

In order to apply constraint-based reasoning to a set of qualitative spatial relations, one typically starts with a jointly
exhaustive and pairwise disjoint set of base relations [10,12]. By forming the power set, one obtains the general relations,
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Fig. 3. Qualitative spatial relation between two oriented points located at the same position. The qualitative spatial relation depicted here is A rf
same B .

with bottom, top, intersection, union and complement of relations defined in the set-theoretic way. Moreover, an identity
base relation and a converse operation (�) on base relations must be provided; the latter naturally extends to general
relations. Finally, if composition of base relations cannot be expressed using general relations (strong composition), this
operation is approximated by a weak composition [21]:

b1 � b2 = {
b | (b1 ◦ b2) ∩ b �= ∅}

where b1 ◦ b2 is the usual set theoretic composition

R ◦ S = {
(x, z) | ∃y . (x, y) ∈ R, (y, z) ∈ S

}
and a general relation (= set of base relations) is identified with its union. Composition is called strong if � coincides with
the set-theoretic composition ◦, otherwise it is called weak. For details we refer to [12,21].

The composition of relations must be computed based on the semantics of the relations. The compositions are usually
computed only for the atomic relations; this information is stored in a composition table. The composition of compound
relations can be obtained as the union of the compositions of the corresponding atomic relations. The compositions of the
atomic relations can be deduced directly from the geometric semantics of the relations (see Section 2.4).

O-point constraints are written as xR y where x, y are variables for o-points and R is an O P RAm relation. Given a
set Θ of o-point constraints, an important reasoning problem is deciding whether Θ is consistent, i.e., whether there is
an assignment of all variables of Θ with dipoles such that all constraints are satisfied (a solution). A partial method for
determining the inconsistency of a set of constraints Θ is the path-consistency method [14], which computes the algebraic
closure of Θ . This method iterates the following operation until a fixed point is reached:

∀i, j,k : Rij ← Rij ∩ (Rik � Rkj)

where i, j,k are nodes and Rij is the relation between i and j. The resulting set of constraints is equivalent to the original
set, i.e. it has the same set of solutions. If the empty relation occurs while performing this operation, Θ is inconsistent,
otherwise the resulting set is algebraically closed1 [21]. Note that algebraic closure does not always imply consistency, and
indeed, [7] show that this implication does not hold for the O P RAm calculus. Indeed, consistency in O P RAm has been
shown to be NP-hard even for scenarios in base relations [26], while algebraic closure is a polynomial approximation of
consistency.

2.3. O-point calculi with scalable granularity

The design principle for the coarse O P RA2 calculus described above can be generalized to calculi O P RAm with
arbitrary m ∈ N. Then an angular resolution of 2π

2m is used for the representation (a similar scheme for absolute direction
instead of relative direction was designed by Renz and Mitra [22]). The granularity used for the introduction of the O P RAm
calculus in the previous section is m = 2, the corresponding O P RAm version is then called O P RA2.

To formally specify the o-point relations we use a two-dimensional continuous space, in particular R
2. Every o-point

S in the plane is an ordered pair of a point pS (represented by its Cartesian coordinates x and y, with x, y ∈ R) and an
orientation φS .

S = (pS , φS) , pS = (xS , yS) .

We distinguish the relative locations and directions of the two o-points A and B expressed by a calculus O P RAm
according to the following scheme. For A, B with pA �= pB , we define

ϕAB := atan2(yB − y A, xB − xA)

where atan2(y, x) is the angle between the positive x-axis and the point (x, y), normalized to the interval ]−π,π ]. By the
properties of atan2, we get

ϕB A = ϕAB + π

modulo normalization to ]−π,π ]. In the sequel, we will normalize all angles to this interval, reflecting the cyclic order of
the directions. Hence, e.g. −π stands for π . Moreover, in case that α > β , the open interval ]α,β[ will stand for ]α,π ] ∪
]−π,β[. For example, ]π

2 ,−π
2 [ stands for ]π

2 ,π ] ∪ ]−π,−π
2 [.

1 which means that it is path-consistent in the case that the algebra has a strong composition.
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Fig. 4. Two o-points in relation A 4� 3
13 B .

Fig. 5. Composition in O P RA is weak.

Similarly, we enumerate directions by using the 4m elements of the cyclic group Z4m . Each element of the cyclic group
is interpreted as a range of angles as follows:

[i]m =
{ ]2π i−1

4m ,2π i+1
4m [, if i is odd

{2π i
4m }, if i is even.

Conversely, for each angle α, there is a unique element i ∈ Z4m with α ∈ [i]m .2

If pA �= pB , the relation A m � j
i B (i, j ∈ Z4m) reads like this: given a granularity m, the relative position of B with respect

to A is described by i and the relative position of A with respect to B is described by j. Formally, it represents the set of
configurations satisfying

ϕAB − φA ∈ [i]m and ϕB A − φB ∈ [ j]m.

Using this notation, a simple manipulation of the parameters yields the converse operation (m � i
j)

� = m � j
i .

If pA = pB , the relation A m � i B represents the set of configurations satisfying

φB − φA ∈ [i]m.

Hence the relation for two identical o-points A = B for arbitrary m ∈ N is Am � 0B . Using this notation a simple manipu-
lation of the parameters yields the converse operation (m � i)� = m � (4m − i). The composition tables for the atomic relations
of the O P RAm calculi can be computed using a small set of simple formulas detailed in the following subsection.

Fig. 4 shows an example for granularity m = 4. For m = 2 the previously-used symbolic names now get numeric coun-
terparts, e.g. front

front becomes 2 � 0
0.

It should be mentioned that the passage from O P RA1 to O P RAm (m � 2) is a qualitative jump: while O P RA1
relations are preserved by all orientation-preserving affine bijections, for m � 2, O P RAm relations are only preserved by
all angle-preserving affine bijections, see [17].

Proposition 1. Composition in O P RAm is weak.

Proof. By the left picture in Fig. 5, the configuration A1� 0
0 B , B1 � 2

1C and A1� 3
3C is realizable. However, given A and C as

in the right picture of Fig. 5, we have A1� 3
3C , but we cannot find B with A1� 0

0 B and B1 � 2
1C : by A1� 0

0 B , B ’s carrier line is
the same as A’s, and the two o-points face each other. But then, B1 � 2

1C is not possible, since B would have to be located
straight behind C (sector “back”).

The argument easily generalizes to O P RAm by considering Am � 0
0 B , Bm � 2m

1 C and Am � 4m−1
4m−1C . �

2 The unary operation [_] taking integers to certain intervals must not be confused with the standard binary interval-building operations [_, _], ]_, _],
[_, _[ and ]_, _[ on the reals.



38 T. Mossakowski, R. Moratz / Artificial Intelligence 180–181 (2012) 34–45
Fig. 6. A complete turn turnm(i, j,k).

2.4. Simple geometric rules for reasoning in O P RAm

The composition table can be viewed as a list (set) of all relation triples Arab B , BrbcC , Crca A for which rab, rbc , and
rca are consistent (A, B , and C being arbitrary o-points on the R

2 plane). In the literature, there are two algorithms for
computing the composition table: [15] presents a fairly simple algorithm, which, however, is incomplete (the relations m � i
are not covered) and contains errors, and [7] provide a correct algorithm, which however is based on a complicated case
distinction with dozens of cases according to whether the three involved relations involve even or odd numbers. We give
an algorithm that is both correct and simpler than the two existing algorithms. In particular, the algorithm treats the cases
distinguished in [7] in a uniform way; the case distinction only appears (in a much simpler form, since only two instead of
six numbers are tested for evenness) in Proposition 2 below.

The first ingredient of the algorithm is a detection of complete turns. Recall that we work in the cyclic group Z4m , and
the input parameters (i, j, k etc.) are understood to be in this group, as well as arithmetics performed within the algorithms.
Accordingly, we also conveniently use −1 as synonym for 4m − 1 etc. We define (see Fig. 6):

turnm(i, j,k) iff i + j + k ∈
{ {−1,0,1}, if both i and j are odd

{0}, otherwise.

This definition determines complete turns in the following sense:

Proposition 2.

1. turnm(i, j,k) iff ∃α ∈ [i]m, β ∈ [ j]m, γ ∈ [k]m . α + β + γ = 0;
2. turnm(i, j,k) implies that for any choice of one of the three angles in its interval, a suitable choice for the other two exists such

that all three add up to 0.

Recall that angles are normalized into ]−π,π ].

Proof. We prove the first statement by a case distinction.
Case 1: both i and j are even. This means that [i]m = {2π i

4m } and [ j]m = {2π j
4m }. Hence,

∃α ∈ [i]m, β ∈ [ j]m, γ ∈ [k]m . α + β + γ = 0

iff ∃γ ∈ [k]m .2π
i + j

4m
+ γ = 0

iff i + j + k = 0

iff turnm(i, j,k).

Case 2: i is odd and j is even. This means that [i]m =]2π i−1
4m ,2π i+1

4m [ and [ j]m = {2π j
4m }. Hence,

∃α ∈ [i]m, β ∈ [ j]m, γ ∈ [k]m . α + β + γ = 0

iff ∃γ ∈ [k]m . − 2π
j

4m
− γ ∈

]
2π

i − 1

4m
,2π

i + 1

4m

[

iff ∃γ ∈ [k]m . γ ∈
]

2π
−i − j − 1

4m
,2π

−i − j + 1

4m

[
iff ∃γ ∈ [k]m . γ ∈ [−i − j]m

iff k = −i − j

iff turnm(i, j,k).

Case 3: i is even and j is odd: analogous to Case 2.
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Fig. 7. Triangles can be defined in terms of complete turns.

Case 4: both i and j are odd. This means that [i]m =]2π i−1
4m ,2π i+1

4m [ and [ j]m =]2π j−1
4m ,2π j+1

4m [. Hence,

∃α ∈ [i]m, β ∈ [ j]m, γ ∈ [k]m . α + β + γ = 0

iff ∃γ ∈ [k]m . γ ∈
]

2π
−i − j − 2

4m
,2π

−i − j + 2

4m

[
iff ∃γ ∈ [k]m . γ ∈ [−i − j − 1]m ∪ [−i − j]m ∪ [−i − j + 1]m

iff k ∈ {−i − j − 1,−i − j,−i − j + 1}
iff turnm(i, j,k).

The second statement is straightforward when inspecting the proof above. �
Next, we turn to triangles. In a triangle, the sum of angles is always π . This can be expressed via a turn, when adding

another −π (i.e. −2m in the abstract representation), leading to turnm(i, j,k − 2m). Moreover, all angles have the same sign
(expressed as signm(i) = signm( j) = signm(k)). We include the degenerate case where two angles are 0 and the remaining one
is π (this corresponds to three points on a line), but we exclude the case of three angles being π (this is not geometrically
realizable). This leads to the following definitions (see also Fig. 7):

signm(i) =
⎧⎨
⎩

0, if (i mod 4m = 0) ∨ (i mod 4m = 2m)

1, if i mod 4m < 2m
−1, otherwise,

trianglem(i, j,k) iff turnm(i, j,k − 2m) ∧ (i, j,k) �= (2m,2m,2m) ∧ signm(i) = signm( j) = signm(k).

Here, the angle π also has sign 0, which corresponds to geometric intuition and to the fact that the choice between −π
and π to represent this angle is rather arbitrary.

From the above discussion, it is then straightforward to see

Proposition 3.

trianglem(i, j,k) iff ∃α ∈ [i]m, β ∈ [ j]m, γ ∈ [k]m . there exists a triangle with angles α,β,γ .

Fig. 8 shows all possible triangles for m = 1,2,3,4.
Algorithm 1 now gives the complete algorithm for computing O P RAm compositions (actually, it is more a sequence

of mathematical definitions, which however is directly implementable as a computer program). The ternary predicate opra
computes the composition of O P RAm relations, that is, opra(R, S, T ) holds if T belongs to the weak composition R � S .
opra is computed using a case distinction whether the relation is a same-relation or not; for three relations this yields eight
cases. opra is defined in terms of the predicates trianglem and turnm and the function signm discussed above. Note that we
have slightly rephrased the definition of turnm(i, j,k), the new version already taking care of our convention regarding the
cyclic group Z4m and thus being directly implementable as a computer program using the usual integers instead of Z4m .

We illustrate algorithm 1 with an example. Fig. 9 shows a composition in O P RA4 with A 4 � 3
13 B and B 4 � 9

15 C and
A 4� 7

15 C . Let us check that indeed opra(4 � 3
13, 4 � 9

15, 4 � 7
15) holds. Since we are in the last case, with m = 4, i = 13, j = 3, k = 15,

l = 9, s = 15 and t = 7, we have to show ∃0 � u, v, w < 16 . turn4(u,3,15)∧ turn4(v,1,3)∧ turn4(w,9,9)∧ triangle4(u, v, w),
noting that −13 ≡ 3(mod 16), −15 ≡ 1(mod 16) and −7 ≡ 9(mod 16). Choosing e.g. u = 13, v = 11 and w = 15 provides
suitable witnesses for the existential quantification; this is illustrated in Fig. 10. (At the end of this section we discuss how
to find witnesses efficiently.)
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1 (0,0,2),(0,2,0),
(1,1,1),
(2,0,0),
(3,3,3)

2 (0,0,4),(0,4,0),
(1,1,1),(1,1,2),(1,1,3),(1,2,1),(1,3,1),
(2,1,1),
(3,1,1),
(4,0,0),
(5,7,7),
(6,7,7),
(7,5,7),(7,6,7),(7,7,5),(7,7,6),(7,7,7)

3 (0,0,6),(0,6,0),
(1,1,3),(1,1,4),(1,1,5),(1,2,3),(1,3,1),(1,3,2),(1,3,3),(1,4,1),(1,5,1),
(2,1,3),(2,2,2),(2,3,1),
(3,1,1),(3,1,2),(3,1,3),(3,2,1),(3,3,1),
(4,1,1),
(5,1,1),
(6,0,0),
(7,11,11),
(8,11,11),
(9,9,11),(9,10,11),(9,11,9),(9,11,10),(9,11,11),
(10,9,11),(10,10,10),(10,11,9),
(11,7,11),(11,8,11),(11,9,9),(11,9,10),(11,9,11),(11,10,9),(11,11,7),(11,11,8),
(11,11,9)

4 (0,0,8),(0,8,0),
(1,1,5),(1,1,6),(1,1,7),(1,2,5),(1,3,3),(1,3,4),(1,3,5),(1,4,3),(1,5,1),(1,5,2),(1,5,3),
(1,6,1),(1,7,1),
(2,1,5),(2,2,4),(2,3,3),(2,4,2),(2,5,1),
(3,1,3),(3,1,4),(3,1,5),(3,2,3),(3,3,1),(3,3,2),(3,3,3),(3,4,1),(3,5,1),
(4,1,3),(4,2,2),(4,3,1),
(5,1,1),(5,1,2),(5,1,3),(5,2,1),(5,3,1),
(6,1,1),
(7,1,1),
(8,0,0),
(9,15,15),
(10,15,15),
(11,13,15),(11,14,15),(11,15,13),(11,15,14),(11,15,15),
(12,13,15),(12,14,14),(12,15,13),
(13,11,15),(13,12,15),(13,13,13),(13,13,14),(13,13,15),(13,14,13),(13,15,11),
(13,15,12),(13,15,13),
(14,11,15),(14,12,14),(14,13,13),(14,14,12),(14,15,11),
(15,9,15),(15,10,15),(15,11,13),(15,11,14),(15,11,15),(15,12,13),(15,13,11),
(15,13,12),(15,13,13),(15,14,11),(15,15,9),(15,15,10),(15,15,11)

Fig. 8. All possible triangles for m = 1,2,3,4.

Algorithm 1 Checking entries of the O P RAm composition table

turnm(i, j,k) iff |(i + j + k + 2m)mod 4m) − 2m| � (i mod 2) × ( j mod 2)

signm(i) =
⎧⎨
⎩

0, if (i mod 4m = 0) ∨ (i mod 4m = 2m)

1, if i mod 4m < 2m

−1, otherwise

trianglem(i, j,k) iff turnm(i, j,k − 2m) ∧ (i, j,k) �= (2m,2m,2m) ∧ signm(i) = signm( j) = signm(k)

opra(m � i, m � k, m � s) iff turnm(i,k,−s)
opra(m � i, m � k, m � t

s) iff false
opra(m � i, m � l

k, m � s) iff false
opra(m � i, m � l

k, m � t
s) iff l = t ∧ turnm(i,k,−s)

opra(m � j
i , m � k, m � s) iff false

opra(m � j
i , m � k, m � t

s) iff i = s ∧ turnm(t,k,− j)

opra(m � j
i , m � l

k, m � s) iff j = k ∧ turnm(i,−l,−s)

opra(m � j
i , m � l

k, m � t
s) iff ∃0 � u, v, w < 4m . turnm(u,−i, s) ∧ turnm(v,−k, j) ∧ turnm(w,−t, l) ∧ trianglem(u, v, w)
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Fig. 9. A composition of two O P RA4 relations A 4 � 3
13 B and B 4 � 9

15 C , leading to A 4� 7
15 C .

Fig. 10. The composition in Fig. 9 is obtained by turn4(13,3,15), turn4(11,1,3) turn4(15,9,9) and triangle4(13,11,15). Note that the turns at A and C are
drawn in clockwise direction (then 1 is the largest clockwise turn, and 15 the smallest one).

Fig. 11. Case pA = pB = pC : one complete turn at pA = pB = pC .

Theorem 4. Algorithm 1 computes composition in O P RAm, that is, opra(R, S, T ) holds if T belongs to the weak composition R � S.

Proof. Case opra(m � i, m � k, m � s). Since the points of all these o-points are the same, their direction must add up to a com-
plete turn. More precisely, the configuration m � i, m � k, m � s is realizable iff there are o-points A, B and C with pA = pB = pC ,
φB − φA ∈ [i]m , φC − φB ∈ [k]m , and φC − φA ∈ [s]m . Since for such A, B and C , (φB − φA) + (φC − φB) − (φC − φA) = 0 (i.e.
we have a complete turn), by Proposition 2 this is in turn equivalent to turnm(i,k,−s). This is illustrated by Fig. 11 (but
note that our argument is analytic and does not rely on pictures).
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Fig. 12. Case pA = pB �= pC : one complete turn at pA = pB .

Fig. 13. Case pA , pB and pC all distinct: three complete turns. The right picture illustrates the definitions of φAB and φAC , as well as the geometric
interpretation of φA .

Cases opra(m � i, m � k, m � t
s), opra(m � i, m � l

k, m � s) and opra(m � j
i , m � k, m � s). Since sameness of points is transitive, these cases

are not realizable.
Cases opra(m � i, m � l

k, m � t
s), opra(m � j

i , m � k, m � t
s) and opra(m � j

i , m � l
k, m � s). We here only treat the case opra(m � i, m � l

k, m � t
s); the

other two cases being analogous. The configuration Am � iB, Bm � l
kC, Am � t

sC is realizable iff

there are o-points A, B and C with

pA = pB , φB − φA ∈ [i]m,

φBC − φB ∈ [k]m, φC B − φC ∈ [l]m,

φAC − φA ∈ [s]m and φC A − φC ∈ [t]m.

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(∗)

We now show that (∗) is equivalent to

l = t and turnm(i,k,−s).

Assume (∗). By pA = pB , we have φBC = φAC and φC B = φC A ; from the latter, we also get l = t . Moreover, (φB −φA)+ (φBC −
φB) − (φAC − φA) = 0 is a turn, and by Proposition 2, we get turnm(i,k,−s). Conversely, assume l = t and turnm(i,k,−s).
By Proposition 2, there are angles α,β,γ with α ∈ [i]m , β ∈ [k]m and γ ∈ [−s]m . Choose A arbitrarily. Then define B by
pB = pA and φB = α − φA . Then choose pC on the half-line starting from pA and having angle β to B and −γ to A. Finally,
choose φC such that φC A − φC = φC B − φC ∈ [t]m = [l]m . This ensures the conditions of (∗). This is illustrated by Fig. 12.

Case opra(m � j
i , m � l

k, m � t
s). We need to show that the existence of a configuration Am � j

i B , Bm � l
kC and Am � t

sC is equivalent
to

∃0 � u, v, w < 4m.

turnm(u,−i, s) ∧ turnm(v,−k, j) ∧ turnm(w,−t, l)

∧ trianglem(u, v, w).

⎫⎬
⎭ (∗∗)

Given Am � j
i B , Bm � l

kC and Am � t
sC , let α, β and γ be the angles of the triangle pApB pC , that is,

α = φAB − φAC

β = φBC − φB A

γ = φC A − φC B .

Let u, v, w ∈ Z4m be such that α ∈ [u]m , β ∈ [v]m and γ ∈ [w]m . By Proposition 3, trianglem(u, v, w). At the corners of
the triangle pApB pC , the following complete turns can be formed (see Fig. 13):
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Fig. 14. Street networks with unique crossing names (detail with o-points to the right including the two relations C2C3
front
front C3C2 , and C2C3

right
same C2C5).

• at pA : (φAB − φAC ) − (φAB − φA) + (φAC − φA), corresponding to turnm(u,−i, s) by Proposition 2,
• at pB : (φBC − φB A) − (φBC − φB) + (φB A − φB), corresponding to turnm(v,−k, j),
• at pC : (φC A − φC B) − (φC A − φC ) + (φC B − φC ), corresponding to turnm(w,−t, l).

This shows (∗∗). Conversely, assume (∗∗). By trianglem(u, v, w) and Proposition 3, we can choose pA , pB and pC such that

φAB − φAC ∈ [u]m

φBC − φB A ∈ [v]m

φC A − φC B ∈ [w]m.

Since turnm(u,−i, s), by Proposition 2, we can find αA , βA and γA such that αA + βA + γA = 0 and αA ∈ [−i]m , βA ∈ [s]m

and γA ∈ [u]m . Proposition 2(2) implies that it is possible to choose γA = φAB − φAC (note that the latter angle is also in
[u]m). Put φA := φAB +αA , then φAB −φA = −αA ∈ [i]m , and φAC −φA = (φAB −φA)− (φAB −φAC ) = −αA −γA = βA ∈ [s]m .
φB and φC can be chosen similarly, fulfilling the constraints given by j and k resp. l and t . �

Using Algorithm 1, a composition table for O P RAm can be computed by enumerating all possible triples and only
keeping those for which the predicate opra holds.

The run time of the predicate opra is O (m3), since the algorithm contains an existential quantification over the variables
u, v , and w , ranging from 0 to 4m − 1. However, the existential quantification can be replaced by a constant number of case
distinctions: e.g. we look for u such that turnm(u,−i, s). But since u − i + s must add up to −1, 0 or 1, it is clear that u
must be taken from the set {i − s − 1, i − s, i − s + 1}. As a result, we get an improved run time that is constant. This holds
only when assuming a register machine with arithmetic operations executed in constant time. For a Turing machine with
binary representations of numbers, basic arithmetic operations take time log m. Then the run time is O (log m).

The computation of the composition of two relations needs to enumerate all possible third relations, and then check
each triple in constant time. Since there are (4m)2 + 4m relations, this takes O (m2) time, which is the same time as in [7].
Again, for Turing machines, this is multiplied by a factor of log m, hence we get an overall running time of O (m2 log m). Of
course, the same remark applies to the algorithm of [7].

A Haskell version of the opra algorithm (also implementing the above optimization of the existential quantification) can
be downloaded from http://quail.rsise.anu.edu.au/uploads/Opra_comp.hs.

The O P RAm calculus can be used to express many other qualitative position calculi [4].

3. Applications of the OPRAm calculus

Spatial knowledge expressed in O P RAm can be used for deductive reasoning based on constraint propagation (algebraic
closure), resulting in the generation of useful indirect knowledge from partial observations in a spatial scenario. Several
researchers have developed applications using the O P RAm calculus. We will give a short overview and then make some
concluding comments about the first O P RAm calculus applications in our concluding section which follows.

In a simple application by Lücke et al. [13] for benchmarking purposes between different spatial calculi, a spatial agent
(a simulated robot, cognitive simulation of a biological system etc.) explores a spatial scenario. The agent collects local
observations and wants to generate survey knowledge. Fig. 14 shows a spatial environment consisting of a street network.
The notation C2C1 refers to the o-point at position C2 with an intrinsic orientation towards point C1. In this street net-
work some streets continue straight after a crossing and some streets meet with orthogonal angles. These features are
typical of real-world street networks and can be directly represented in O P RA2 expressions about o-points that constitute
relative directions of o-points located at crossings and pointing to neighboring (e.g. visible) crossings. For example two re-
lations corresponding to local observations referring to the street network part depicted in Fig. 14 are: C2C3

front
front C3C2 and

C2C3
right
same C2C5. Spatial reasoning in this spatial agent simulation uses constraint propagation (e.g., algebraic closure compu-

tation) to derive indirect constraints between the relative location of streets which are further apart from local observations
between neighboring streets. The resulting survey knowledge can be used for several tasks including navigation tasks. The
details of this scenario can be found in Lücke et al. [13].

http://quail.rsise.anu.edu.au/uploads/Opra_comp.hs
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Fig. 15. Representation of vessel navigation with conceptual neighborhood in O P RA4.

A related application developed by Wallgrün [25] uses qualitative spatial reasoning with O P RA2 to determine the
correct graph structure from a sequence of local observations collected by a simulated robot while moving through an
environment consisting of hallways. These hallway networks are analogous to the street networks of Lücke et al., but the
local observation are modeled in a more complex, realistic way. The identity of a crossing revisited after a cyclic path is
not given but has to be inferred, which makes navigation much more challenging. Since there are many ambiguities left,
the task is to track the multiple geometrically possible topologies of the network during an incremental observation. Thus,
the goal of Wallgrün’s qualitative mapping algorithm is to process the history of observations and determine all route graph
hypotheses which can be considered valid explanations so far. This consistency checking can be based on qualitative spatial
reasoning about positions. The local relative observations are modeled based on O P RA2 expressions about o-points in a
similar way as in the street network described above. Composition-based O P RA2 reasoning is the key part of the spatial
reasoning. In this application the search space is significantly reduced and the solution quality improved by composition-
based reasoning. Wallgrün [25] concludes that relative direction information provided with O P RA2 is only slightly inferior
to absolute direction information provided with the cardinal direction calculus [11] but has the advantage of being more
accessible. Wallgrün also applied this approach to real sensor data collected with a mobile robot, confirming the positive
results from the simulation. Wallgrüns application shows that using a composition table, algebraic closure is very useful
for solving spatial navigation tasks even if algebraic closure is not sufficient to decide the global consistency of constraint
networks.

A comprehensive simulation which uses the O P RA4 calculus for an important subtask was built by Dylla et al. [2].
Their system called SailAway simulates the behavior of different vessels following declarative (written) navigation rules
for collision avoidance. This system can be used to verify whether a given set of rules leads to stable avoidance between
potentially colliding vessels. The different vessel categories that determine their right of way priorities are represented in
an ontology. The movement of the vessels is described by a method called conceptual neighborhood-based reasoning (CNH
reasoning). CNH reasoning describes whether two spatial configurations of objects can be transformed into each other by
small changes [5,8]. A CNH transformation can be an object movement in a short period of time. Fig. 15 shows a CNH
transition diagram which represents the relative trajectories of two rule following vessels. The depicted sequence between
two vessels A and B is: A 4 � 0

0 B → A 4 � 1
1 B → A 4 � 2

2 B → A 4 � 3
3 B . Based on this qualitative representation of trajectories,

CNH reasoning is used as a simple, abstract model of the navigation of the potentially colliding vessels in the SailAway
simulator [2].3

These three applications make use of qualitative spatial reasoning with O P RA2 or O P RA4 in simulated spatial agent
scenarios. The granularity m = 2 can model straight continuation and right angles which are important for representing
idealized street networks. The granularities m = 2 and m = 4 also correspond to earlier work on computational models of
linguistic projective expressions (left, right, in front, behind) by Moratz et al. [16,20]. The applications presented in this
section could benefit from additional qualitative relative distance knowledge. The TPCC calculus presented by Moratz and
Ragni [18] is a first step towards this direction. However, in contrast to our new results for the O P RAm calculus, the TPCC
calculus only has a complex, manually derived and therefore unreliable composition table.

4. Summary and conclusion

A calculus for representing and reasoning about qualitative relative direction information was recently introduced in [15]
by one of the authors of this paper. In this calculus, oriented points serve as the basic entities since they are the simplest
spatial entities that have an intrinsic orientation. Sets of base relations can have adjustable granularity levels in this calculus.

However, the previous work had difficulties in finding an adequate method to derive the composition table for this cal-
culus, which is central to constraint-based reasoning. In this paper we provided new simple geometric rules for computing
the calculus’s composition based on triples of oriented points.

We gave a short overview about three applications that are based on oriented points and their relative position repre-
sented as O P RAm relations with granularity m = 2, or m = 4 which seem to be suited for linguistically inspired spatial
expressions. These applications show that using a composition table, algebraic closure is very useful for solving spatial
navigation tasks even if algebraic closure is not sufficient to decide the global consistency of constraint networks.

3 An earlier version of qualitative navigation simulation by Dylla and Moratz can be found in [3].
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As future work we plan to augment our relative orientation calculus with additional qualitative relative distance knowl-
edge.
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