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The first objective of this study was to evaluate the applicability of using a low density

(ca. 1 point m−2) discrete-return LiDAR for predicting maximum tree height, stem density, basal

area, quadratic mean diameter, and stem volume using an area-based approach. The research

was conducted at the Penobscot Experimental Forest in central Maine, where a range of stand

structures and species composition is present and generally representative of northern Maines

forests. Using a variety of high dimensional LiDAR metrics, a prediction model was developed

using random forest, a nonparametric approach, based on reference data collected in fixed radius

circular plots. For comparison, the volume model used two sets of reference data with one

being fixed radius circular plots and the other were variable sampling plots. Prediction biases

were evaluated with respect to five silvicultural treatments and softwood species composition

based on the coefficient of determination (R2), root mean square error, and mean bias as well as

residual scatter plots. LiDAR tended to underestimate forest inventory attributes, regardless of

silvicultural treatments and species composition. However, the unmanaged units had particularly

larger prediction biases, while the prediction biases also tended to be larger when softwood

species composition was greatest. The maximum tree height model had the largest R2 (86.9%)

followed by the volume model (72.1%), while the stem density had the smallest (R2) (28.7%).

Reference data collected in the 0.08-ha fixed radius circular plots resulted in a volume prediction

model with a larger R2. While it was difficult to develop models with a large (R2) owing to



complexities of Maines forest structures and species composition, low density LiDAR with the

area-based approach can be used as a supporting tool in forest management for this region.

The second objective of this thesis was to investigate the applicability of low density

(ca. 3 pulses m−2) LiDAR data to deploy an individual tree-based approach. Specifically, this

study focused on species classifications as well as total height and volume predictions for stem

mapped trees. The research was conducted at the Penobscot Experimental Forests in central

Maine, where a range of stand structures and species composition is present and generally

representative of northern Maine’s forests. First, a random forest technique classified species

type and softwood species based on LiDAR metrics. Second, the random forest technique was

employed to calibrated individual tree height and volume prediction models. Classification errors

for species were evaluated with a confusion matrix, while height and volume prediction biases

were evaluated based on the coefficient of determination R2, root mean square error, and mean

bias, as well as residual scatter plots with respect to three silvicultural treatments and softwood

species composition. Overall, both species type and softwood species classifications had poor

classification accuracy, inferring that calibration of LiDAR pulse intensity is necessary. Also, the

height and volume models had small R2 values of 0.38 and 0.30, respectively. This limited accu-

racy of both models likely is caused by low LiDAR pulse density, which prevents an accurate

representation of trees in subcanopy positions.
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CHAPTER 1

ASSESSING THE FEASIBILITY OF LOW DENSITY LIDAR FOR STAND

INVENTORY ATTRIBUTE PREDICTIONS IN COMPLEX AND

MANAGED FORESTS OF NORTHERN MAINE, USA

1.1 Introduction

Data on forest structure, such as stem density, basal area, and timber volume are used

in both strategic and tactical forest management plans. To achieve goals of sustainable forest

management, managers need to acquire accurate forest structural and conditional information

for a variety of spatial scales including the stand, landscape, or regional levels, depending

on management objectives. Conventionally, information acquired at the ground plot level is

collected and expanded for estimates of total tree volume per stand, per county or even larger

areas. However, conventional field measurements generally consist of a limited number of

sampling plots that are established in stands where the forest structural variability within and

between stands would not be accounted for Stone et al. (2011).

In contrast, airborne discrete-return LiDAR (Light Detection and Ranging), a type of

remote sensing, has been widely accepted as an appropriate technology and supporting tool in

ecosystem studies and sustainable forest management Akay et al. (2009); Hudak et al. (2009);

Lefsky et al. (2002); Woods et al. (2011). Using an airborne discrete-return LiDAR system,

forest managers can deploy a robust and reliable data sampling approach to complement conven-

tional field measurements for estimating volume or other forest inventory attributes from the plot

to landscape level Evans et al. (2009); Woods et al. (2011). The ability of LiDAR to inform forest

management decisions has been demonstrated in a range of forest types, including boreal forest

Woods et al. (2011), mixed softwood Hummel et al. (2011), mixed hardwood Anderson and

Bolstad (2013), and single-species softwood plantations Goerndt et al. (2010).

However, there are three major issues associated with airborne discrete-return LiDAR

system based forest inventory estimations. First, LiDAR tends to underestimate tree heights

because pulse hits directly on treetops are generally insufficient Næsset (1997); Clark et al.

(2004). Also, pulse returns are difficult to discriminate either from other nearby treetops or
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objects other than treetops (e.g. from bare-ground, understory vegetation, sides of crowns), a

problem which has been avoided in some studies by arbitrarily defining a fixed threshold height

Garcı́a et al. (2010); Goerndt et al. (2010); Jaskierniak et al. (2011); Næsset (1997). For instance,

bare-ground is presumably 1 m below the lowest pulse return to account for height of understory

vegetation Garcı́a et al. (2010); Næsset (1997), which can differ among forest ecosystems and

silvicultural regimes. Thus, certain preliminary information is necessary to define threshold

heights, particularly in northern Maine where the forests have extensive advance regeneration

due to past and present silvicultural treatments McWilliams et al. (2005). Finally, extracting

height information accurately at the individual tree level may not be possible from LiDAR data,

despite a number of studies that have pursued such a goal Falkowski et al. (2006); Popescu

(2007). Thus, LiDAR based predictions need to be carried out with a different approach because

conventional volume or biomass equations often require both individual tree diameter and height

information.

Regarding the second issue, LiDAR pulse footprint sizes and pulse densities may

strongly affect prediction accuracy levels in forest inventory estimations. Nilsson (1996)

reported that three different footprint sizes (0.75, 1.50 and 3.00 m in diameter) did not affect

mean tree height estimations. However, Thomas et al. (2006) suggested that smaller pulse

footprint sizes might be suitable for acquiring subdominant canopy information, while Zimble

et al. (2003) reported that a low pulse density LiDAR (0.5 pulses m−2) resulted in insufficient

pulse direct hits on treetops; thus, height estimations at the stand-level were significantly

underestimated compared to field measured tree heights. Popescu and Wynne (2004) as well

as Falkowski et al. (2006) suggested that individual tree based estimation need a rather high

LiDAR pulse density (6-8 pulses m−2) to provide a sufficient number of pulse hits at treetops.

However, some prior studies established strong correlations between LiDAR metrics and forest

inventory attributes on plot-level based on low pulse density LiDAR (< 2 pulse m−2) Hawbaker

et al. (2010); Jensen et al. (2006); Means et al. (2000); Næsset (2004); Thomas et al. (2006).

For example, Treitz et al. (2012) reported that a low pulse density, such as 0.5 pulses m−2 was

sufficient for forest inventory attribute prediction regarding tactical forest management. Thus, if
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the objective is to predict forest attributes at the plot and stand level (instead of individual tree

level), relatively low pulse density LiDAR should be sufficient.

Regarding the third issue, few LiDAR studies have been reported for relatively complex

forest structures, such as those that are predominant in northern Maine. While a number of

studies have reported that low pulse density LiDAR metrics and field measured forest inventory

attributes, particularly volume, height, and biomass related attributes, on plot- and stand-levels

showed relatively high coefficient of determination (R2) in other forest ecosystems, limited work

has been in regions dominated by mixed species and multi-canopy stands. Recently, Anderson

and Bolstad (2013) evaluated the use of LiDAR in various forest types in the Great Lakes which

are quite similar to those found in Maine, and found a strong relationship between ground-based

measurements, regardless if the LiDAR data was collected with hardwood species leaf-on or

leaf-off.

We assessed the feasibility of predicting various plot and stand level forest inventory

attributes based on airborne low-density discrete-return LiDAR in a range of stand structures

and species composition that are representative of northern Maine’s forest. The primary objec-

tives of this analysis were to: (1) establish empirical relationships between LiDAR data and

forest inventory attributes such as maximum tree height, stem density, quadratic mean diameter

(QMD), basal area and stem volume; (2) assess prediction accuracy across a range silvicultural

treatments and species compositions; and (3) evaluate the influence of reference data acquired

from research- and operational-grade sampling protocols on attribute predictions.

1.2 Experimental Section

1.2.1 Study Area

The study was conducted on the Penobscot Experimental Forest (PEF) near Orono,

Maine, USA (N44◦49’30”, W68◦39’00”) (Figure 1.1). The PEF was established in 1952 by

U.S. Forest Service, and a number of studies regarding timber management, stand dynamics,

productivity, biological diversity and more have been conducted Sendak et al. (2003). The total

area of the PEF is 1,619 ha, and various silvicultural treatments (e.g. natural area, clearcut,

3
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Figure 1.1. The Penobscot Experimental Forest near Orono, Maine, USA (N44◦49’30”,
W68◦39’00”). Eleven different silvicultural treatments have been monitored with long
term permanent sampling plots.

shelterwood, diameter-limit cutting) have been twice replicated for long term observations. The

treatments generally range in size of 0.5 to 22.4 ha and are representative of typical northern

Maine’s silvicultural practices (Table 1.1). With a few exceptions, most treatments are repli-

cated in the PEF, and field data (e.g. DBH) for each of replicated treatments are collected at

about 600 permanent sampling plots on a 10-year cycle.

Overall, the PEF is defined as a mixed northern conifer dominant forest as a part of

Acadian ecosystem Sendak et al. (2003). The major hardwood species in the PEF are red maple

(Acer rubrum L.), birches (Betula spp.) and aspens (Populus spp.), while the major softwood

species are spruces (Picea spp.), balsam fir (Abies balsamea L. (Mill.)), nothern white cedar

(Thuja occidentalis L.) and eastern white pine (Pinus strobus L.). The range of elevation above

sea level is between 20 and 70 m.

1.2.2 Inventory Attributes Data

For this study, eleven replicated management units (total of 22 silvicultural treatment

units) that varied from 2.86 to 19.58 ha in size were selected (Figure 1.1). Within these 22
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Table 1.1. Description of silvicultural treatments in management units (MUs) in the
study area.

Area
(ha)

Treat- Inven-
Plot
(n)

Treatment
Group

MU ment tory Description of Silvicultural Treatment
year year

4 10.1 1994 2009 4
Fixed diameter-limit cutting. Thresholds are
14.0 cm for balsam fir, 24.1 cm for spruce and
hemlock, 26.7 cm for white pine, 19.1 cm for
cedar and paper birch, and 14.0 cm for other
hardwoods.

15 10.3 2001 2007 6
Diameter-

24 9.4 1996 2005 4
Modified diameter-limit cutting. The third
modified diameter-limit cut was applied in 1995.
Portions of the stand are in the stem exclusion
and understory reinitiation stages of
development.

limit (DL)

28 7.3 1997 2007 6

9 12.2 2003 2003 4 5-year cutting cycle. Structural goal is to retain
24.1 m2 ha−1 (trees > 11.4 cm).16 8.6 2006 2006 5

12 12.5 1994 2004 5 10-year cutting cycle. Structural goal is to retain
20.7 m2 ha−1 (trees > 11.4 cm).20 8.8 1998 2008 7 Selection

17 10.9 1994 2005 5 20-year cutting cycle. Structural goal is to retain
16.1 m2 ha−1 (trees > 11.4 cm).

(SEL)
27 8.4 1997 2007 7
13 13.2 1995 2009 8

Crop tree selection
25 18.0 2009 2009 8

7A 10.6 1979 2003 7
2-stage uniform shelterwood. Overstory was
removed in two harvests, unmerchantable trees
> 5.08 cm in DBH felled after final overstory
removal.

7B 10.9 1979 2003 7

23A 5.3 2007 2007 3
3-stage uniform shelterwood with PCT. Manual
PCT to a residual spacing of 2×3 m was applied
in 1983. The canopy is not closed, and volunteer
growth has occurred between crop trees.

Shelterwood

29A 3.6 2009 2010 3
(SHE)

6 19.6 1995 2010 7
Multi-stage shelterwood with retention.
Overstory will be removed in series of harvests
at 10-year intervals, approximately 2 overstory
trees acre−1 will be retained through the next
rotation.

10 9.2 1995 2010 3

8 17.6 1983 2008 7
Unregulated harvest/commercial clearcutting.
This compartment was initially cut with
unregulated (”loggers choice”) harvests. The
second harvest was a commercial clearcut in
1982. The stands are in the stand initiation and
stem exclusion phases of development.

Clearcut

22 13.6 1988 2004 6
(CC)

32A 5.2 - 2009 3 Unmanaged natural area (partial cutting had been Unmanaged
32B 2.9 - 2009 3 practiced prior to 1900). (NAT)
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management units, a total of 117 permanent sampling plots were established with a range of 3-7

fixed, nested circular permanent sampling plots established in each management unit. On each

0.02-ha (1/20th-acre) permanent sampling plot, diameter at breast height (DBH) were collected

from all trees with a DBH greater than 6.35 cm (2.5 inches) between 2003 and 2010, depend-

ing on the management unit. On each 0.08-ha (1/5th-acre) permanent sampling plot, DBH was

collected from all trees with DBH greater than 11.25 cm (4.5 inches). On a subsample of perma-

nent sampling plots (n = 117), the total height (HT) and height to crown base were measured on

all trees within the 0.08-ha plot.

Based on DBH and HT, total tree volume was calculated using a species-specific taper

equation Li et al. (2012); Weiskittel and Li (2012). Given the differences between plot measure-

ment and acquisition of the LiDAR data in the fall of 2010, the Acadian Variant of the Forest

Vegetation Simulator was used Weiskittel et al. (2012) to project DBH and HT to a common

year with the number of projections ranging from 1 to 7 annual cycles. Preliminary results indi-

cated that projected inventory data improved the prediction models in comparison to using data

that was not projected. Here after, this sampling method and data are called “research-grade”

in this paper. All inventory attributes (maximum tree height, stem density, QMD, basal area,

volume) were set in the metric unit at the plot-level, and a total volume prediction was scaled

to the management unit level (e.g. m3 management unit−1) from the mean of the plot level data

and the total acreage of the unit. Thus, a total of 117 plot-level and 22 management-unit data

were available for analysis (Table 1.2).

In addition to the research-grade plots, a total of 44-20 basal area factor (BAF) vari-

able sampling plots were established in a total of nine management units between 2010 and

2011. Locations of the plots were the same as the research-grade plots. At each plot, DBH was

measured for all tallied trees, while a local height equation was derived using multi-level mixed

effects to impute height values Robinson and Wykoff (2004), and volume was estimated using

the same equations as described before. Here after, this sampling approach is called “operational-

grade” plots and data in this paper.

6



Table 1.2. Examined attributes (mean ± standard deviation) by management unit (MU).

Maximum Stem Basal Stem %Softwood
Tree Height Density QMD Area Volume Basal

MU (m) (trees ha−1) (cm) (m2 ha−1) (m3 ha−1) Area

mean SD mean SD mean SD mean SD mean SD mean SD

4 11.51 2.46 7964 4284 6.6 1.1 24.6 6.9 82.15 25.66 66 5
15 11.02 2.67 6694 4601 6.9 1.3 21.2 7.6 56.74 17.37 81 4
6 12.70 4.18 12167 5224 5.9 1.7 28.9 5.0 110.63 69.06 86 5

10 15.20 3.94 7966 4054 7.3 1.5 30.0 3.6 139.95 46.14 76 5
7A 10.87 1.64 467 271 18.0 0.6 11.6 6.2 88.10 49.54 95 6
7B 10.67 1.79 321 118 17.4 0.7 7.6 2.8 57.02 19.91 84 6
8 11.14 2.17 8507 3170 7.0 1.0 30.4 4.4 58.63 31.30 56 4

22 10.10 2.32 8277 2892 6.3 0.9 24.2 4.1 32.02 22.81 51 3
9 15.62 4.25 3948 2223 11.2 3.2 31.7 5.9 288.53 44.46 91 6

16 15.10 3.79 2281 1691 15.0 5.6 28.6 5.5 253.21 55.88 84 5
12 15.00 3.73 11240 5177 9.0 2.0 63.0 2.8 248.56 27.05 80 7
20 14.13 4.39 15533 10945 7.8 1.9 59.5 7.8 169.17 91.60 71 7
13 12.43 4.35 12668 4663 7.8 1.7 55.2 10.0 133.98 39.81 84 7
25 13.49 4.15 3894 1824 8.7 3.0 18.6 5.0 162.36 33.66 69 5
17 15.73 4.33 7668 4549 8.2 3.2 30.2 6.4 195.10 62.79 87 6
27 13.56 4.13 12126 3450 6.5 1.0 37.9 4.7 144.66 49.83 79 5
24 15.20 3.94 3665 1953 11.2 2.2 32.4 4.0 249.83 76.84 83 4
28 14.33 3.90 4708 2431 10.5 3.7 32.6 4.5 206.60 64.12 77 4

23A 12.94 2.51 6971 2222 8.5 1.4 37.7 2.1 344.73 81.62 76 3
29A 10.60 1.34 1915 1811 10.9 1.7 15.3 10.1 353.03 84.37 98 2
32A 16.25 5.10 8479 2588 7.6 1.5 36.8 7.9 235.11 96.55 63 2
32B 21.48 6.24 864 267 28.1 5.0 50.8 7.8 662.45 88.81 90 1

Overall 13.59 3.51 6742 3200 10.3 2.1 32.2 5.7 194.21 53.60 78 5
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1.2.3 LiDAR System Specifications

The LiDAR data were acquired along U.S. Geological Survey National Geospatial

Program - Lidar Base Specification Version 1.0 Heidemann (2012). Airborne discrete-return

laser scanner data were acquired using an Optech Gemini 246 instrument in the late October

2010, and the mean flying altitude above sea level was about 1,982 m. LiDAR data was intended

to be collected under a leaf-off condition, but most deciduous trees in the PEF kept leaves at

that time due to an abnormal prolonged summer period in 2010. The sensor generated the pulse

repetition frequency of 50 KHz with, and the laser pulse intensity was 1064 nm with the scan

angle of < 20◦ from the nadiar. Mean laser point density was 1.1 pulses m−2 with footprint of

30 cm, and the sensor collected up to 4 pulse returns.

1.2.4 LiDAR Data Processing and Model Calibration Predictions

All LiDAR data processing including creation of a digital terrain model and LiDAR

metrics were deployed in FUSION v2.90, developed by the U.S. Forest Service Pacific North-

west Research Station McGaughey (2013). The software sorted raw LiDAR data into various

metrics containing a number of potential predictor variables of inventory attributes. In our case,

97 potential predictor variables were created. To calibrate prediction models, FUSION extracted

raw LiDAR data from 117 0.08-ha circular plots coincidental to the research-grade plots in

the management units. On the other hand, for prediction models based on operational-grade

sampling, empirical relationships were established between raw LiDAR data extracted from 44

0.08-ha plots coincidental to the research-grade plots, because the size of plots varied.

Although understory vegetation heights varied largely depending on silvicultural treat-

ments in each management unit, we disregarded pulse return within 2 m above ground as prelim-

inary results indicated better model fit (greater R2 values) during the LiDAR data extraction. A

few example predictor variables in the LiDAR metrics were maximum height, the number of 1st

return pulses in the 90th percentile height, and standard deviation of 1st return pulses. Conse-

quently, two LiDAR metrics were generated based on research- and operational-grade samples.
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However, predictor variables in the LiDAR metrics tend to be highly correlated with

others, and some variables would not meet normal distribution criteria Stone et al. (2011); Hudak

et al. (2008); Li et al. (2008). These issues violate the assumption inherent to linear regres-

sion models. In addition, variable selection with high dimensionality metrics is not a simple

process and typical data transformations might not be effective for highly skewed or bimodal

data. Although Akaikes Information Criteria (AIC) is a popular approach for variable selec-

tion in stepwise regression, the developed regression models tend to have model overfit issues,

which are generally not stable when outside of the calibration data. Therefore, the development

of inventory prediction models based on simple and multiple linear regressions would not be

suitable for this type of dataset.

Alternatively, the random forest technique proposed by Breiman Breiman (2001), a

nonparametric approach, may be a more effective technique. Random forest is developed based

on the regression trees algorithm, where predictor variables are split to grow a number of nodes

to select the best predictor variables. In the random forest approach, the regression tree process

is continued to multiple times and compared against a bootstrapped validation dataset. A key

advantage in random forest is that a greater number of predictor variables of various types (cate-

gorical, continuous, binary) can be handled and the relative importance of each predictor variable

can be estimated during the model calibration process. In this analysis, the random forest algo-

rithm was run iteratively in that the model initially included all covariates, the least influential

covariate dropped, and the model reran until there were only five covariates, which preliminary

analysis had suggested was most effective for prediction accuracy.

Stone et al. (2011) reported that inventory prediction models such as a volume prediction

based on random forest had significantly lower R2 values than prediction models based on other

methods, such as regression trees. However, the developed models were based on small number

of reference plot data, and some variables in this study required data transformations for meeting

normal distribution which random forest might more effectively handle. The ‘randomforest’

package Liaw and Wiener (2002) available in R v2.15 R Development Core Team (2012), was

used to calibrate the inventory attribute prediction models in this analysis. Each of calibrated

models was evaluated using the coefficient of determination (R2), mean bias, and root mean
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square error (RMSE) between field measured and LiDAR predicted inventory attributes on the

plot and management unit levels. For each inventory attribute, prediction models were calibrated

based on research- and operational-grade data in the random forest.

To examine the performance of the various models, the bias (observed − predicted) was

examined graphically with the use of lowess regression splines. To simplify interpretation of

the differences between the original eleven different silvicultural treatments, the treatments were

narrowed down to five broad categories, which included diameter-limit, selection, shelterwood,

clearcut, and unmanaged (Table 1.1). To examine the influence of species composition, the % of

softwood vs. hardwood basal area was computed and the plots were typed as either softwood-

dominant (% softwood species ≥ 70) or mixedwood (% softwood species < 70).

Finally, for producing a volume spatial distribution map, a wall-to-wall of 900 m2 grid

cells was overlaid on the PEF area. This size was chosen because it is similar to the size of the

research-grade plots, and total volumes in each management unit (m3 MU−1) were derived as

following equation (1.1):

V olj =
1

nj

(
n∑

i=1

V olij

)
×Aj (1.1)

Where Volj is the total volume (m3 management unit−1) for management unit j, Volij

is the volume (m3 ha−1) for 900 m2 grid i in management unit j, nj is the number of grids in

management unit j, and Aj is the total area (ha) of management unit j.

1.3 Results

Overall, the random forest technique satisfactorily produced a volume prediction model,

but the rest of inventory prediction models did not reach anticipated accuracy levels (Table 1.3).

In general, the three most key variables were LiDAR measured height variables rather than pulse

return counts.
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1.3.1 Maximum Tree Height

Our preliminary analysis indicated that a variable of maximum height elevation was

strongly correlated to field measured maximum height. Thus, we did not develop a maximum

height prediction model through random forest.

In general, LiDAR underestimated the maximum tree height by 1.89 ± 2.06 m, regard-

less of silvicultural treatments and species composition, while an agreement between field and

LiDAR measured maximum height was strong (Table 1.3). In particular, the diameter-limit and

shelterwood units had a constant trend over the LiDAR measured maximum heights as both

RMSEs were relatively small (Table 1.4 and Figure 1.2a). The unmanaged units had the largest

mean bias and RMSE, and the largest variation between underestimation and overestimation.

Also, LiDAR tended to greatly underestimate heights in softwood plots (Figures 1.2b) with

greater mean bias and RMSE than hardwood plots.

1.3.2 Stem Density

In general, LiDAR underestimated the stem density by 9 ± 5013 trees ha−1 regardless

of silvicultural treatments and species composition, while an agreement between field measured

and LiDAR predicted stem density was weak (Table 1.3) as mean bias and RMSE were fairly

large. Although there were no strong spatial trends in the stem density estimation bias based

on the silvicultural treatments, the model generally underestimated stem density in the selection

and clearcut units, while overestimating it in the diameter-limit, shelterwood, and unmanaged

units (Table 1.4 and Figure 1.3a). In particular, the prediction in the diameter-limit units was

increasingly overestimated with increasing predicted stem density. Also, the prediction in the

clearcut units was fluctuated from underestimation to overestimation with increasing predicted

stem density.

1.3.3 Quadratic Mean Diameter

In general, LiDAR overestimated the QMD by -0.05 ± 3.69 cm regardless of silvi-

cultural treatments and species composition, while an agreement between field measured and

11



(a)

−5.0

−2.5

0.0

2.5

5.0

7.5

10 15 20 25 30 35

LiDAR based maximum height ( m )

B
ia

s

(b)

−5.0

−2.5

0.0

2.5

5.0

7.5

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Softwood species composition

B
ia

s

Clearcut Diameter−limit Selection Shelterwood Unmanaged

Figure 1.2. Scatterplot of maximum tree height prediction bias (observed - predicted;
m) over LiDAR predicted values with lowess regression splines for the different silvi-
cultural treatments (a), and plot species composition based on basal area (b).
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Figure 1.3. Scatterplot of stem density prediction bias (observed - predicted; trees ha−1)
over LiDAR predicted values with lowess regression splines for the different silvicul-
tural treatments (a), and plot species composition based on basal area (b).
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LiDAR predicted QMD was low (Table 1.3), while the diameter-limit units had the smallest mean

bias and RMSE (Table 1.4). In particular, the model largely underestimated in the unmanaged

and shelterwood units, and overestimated it in the clearcut and selection units with increasing

predicted QMD (Figure 1.4a). Also, within those three management units except the clearcut

units, the prediction biases were most prominent in plots with a greater softwood composition

(Figure 1.4b).

1.3.4 Basal Area

In general, LiDAR underestimated the basal area by 0.03 ± 13.07 m2 ha−1 regardless

of silvicultural treatments and species composition, while an agreement between field measured

and LiDAR predicted basal area was low (Table 1.3). Regarding RMSE, the shelterwood and

selection units had the largest precision bias (Table 1.4). While the model constantly overesti-

mated in the shelterwood and diameter-limit units, the prediction in the clearcut units tended to

fluctuate from underestimation to overestimation with increasing the predicted basal area (Figure

1.5a). Also, plots with greater softwood species composition tended to have larger prediction

biases (Figure 1.5b).

1.3.5 Stem Volume

In general, LiDAR underestimated the volume by 1.81 66.96 m3 ha−1 across silvicul-

tural treatments and species composition, while the plot-level volume prediction model based

on the 117 research-grade plots achieved a relatively strong agreement between field measured

and LiDAR predicted volume (Table 1.3). The prediction bias in the clearcut and diameter-limit

units was fairly constant as those RMSEs were relatively small, while predictions particularly in

the shelterwood and unmanaged units were varied over the predicted volume as those RMSEs

were large (Table 1.4 and Figure 1.6a). In general, the model underestimated the volume in

the selection and unmanaged units, while overestimated in the diameter-limit and clearcut units.

The prediction in the shelterwood units varied between underestimation and overestimation with

increasing predicted volume. Except for the selection units, prediction biases tended to increase

with greater softwood species composition (Figure 1.6b).
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Figure 1.4. Scatterplot of quadratic mean diameter prediction bias (observed - predicted;
cm) over LiDAR predicted values with lowess regression splines for the different silvi-
cultural treatments (a), and plot species composition based on basal area (b).
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Figure 1.5. Scatterplot of basal area prediction bias (observed - predicted; m2 ha−1) over
LiDAR predicted values with lowess regression splines for the different silvicultural
treatments (a), and plot species composition based on basal area (b).
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Figure 1.6. Scatterplot of volume prediction bias (observed - predicted; m3 ha−1) over
LiDAR predicted values with lowess regression splines for the different silvicultural
treatments (a), and plot species composition based on basal area (b).
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An agreement between the LiDAR prediction model based on the 44 operational-grade

sampling plots and the matched locations of the 44 research-grade sampling plots, in the nine

management units, was relatively high (Table 1.5). The difference in those two R2 values was

about 0.07 with a RMSE difference of 14.81 m3 ha−1. The operational-grade model had predic-

tion biases between overestimation and underestimation in the diameter-limit and selection units

(Figure 1.7a). The research-grade model had prediction biases from underestimation to overes-

timation in the selection units, and from overestimation to underestimation in the diameter-limit

units (Figure 1.7b). In general, the model based on the research-grade plots showed better accu-

racy and precision in the diameter-limit and selection units (Table 1.6). Also, the research-grade

model had smaller mean bias in the mixedwood and softwood plots, although RMSE for mixed-

wood plots was larger than the operational-grade model.

At last, an agreement between field and model estimates of total volume in the manage-

ment unit was strong (R2=0.92). A volume distribution map based on the model with the

research-grade plots is presented in Figure 1.8.
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Figure 1.7. Scatterplot of volume prediction bias (observed predicted; m3 ha−1) over
LiDAR predicted values with lowess regression splines for the two silvicultural treat-
ments. The volume prediction model was calibrated based on the 44 operational-grade
plot data (a), and the 44 research-grade plot data (b).
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Table 1.3. Developed prediction models with the three most key predictor variables with
respect to mean square error in random forest with the coefficient of determination (R2),
mean bias (MB) with standard deviation (SD), and root mean square error (RMSE).

Attributes Key Variables (mean square error)
R2 MB

RMSE
(Adj R2) (SD)

Maximum
0.869 1.89

2.80Tree Height Maximum height
(0.867) (± 2.06)

(m)

Stem Density
5th percentile height (3.302)

0.287 9
4993

(trees ha−1)
Height kurtosis (5.982)

(0.280) (± 5013)
Height L-skewness (6.198)

QMD
Percent 1st return above mean (6.591)

0.489 -0.05
3.68

(cm)
Percent 1st return above 1 m (7.854)

(0.434) (± 3.69)
25th percentile height (8.362)

Basal Area
Percent all returns above 1 m (7.262)

0.344 0.03
13.01

(m2 ha−1)
Height L-kurtosis (7.564)

(0.339) (± 13.07)
99th percentile height (7.614)

Volume
90th percentile height (7.795)

0.721 1.81
66.70

(m3 ha−1)
20th percentile height (8.724)

(0.719) (± 66.96)
75th percentile height (9.757)
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Table 1.4. Mean bias (MB) with standard deviation (SD), and root mean square error
(RMSE) by silvicultural treatments, and species composition. Mixedwood plots had %
basal area softwood < 70, and softwood-dominant plots had % basal area softwood ≥
70.

Silvicultural

Plot

Maximum Stem
QMD Basal Area Volume

treatment Tree Height Density
MB ± SD MB ± SD MB ± SD

(n)
MB ± SD MB ± SD

[RMSE] [RMSE] [RMSE]
Species [RMSE] [RMSE]

(cm) (m2 ha−1) (m3 ha−1)
composition (m) (trees ha−1)

Diameter-
20

2.27±1.19 -1415±2843 0.05±1.95 -3.67±7.08 -1.12±36.04
limit [2.55] [3111] [1.90] [7.80] [35.14]

Selection 49
2.73±1.81 2119±5755 -0.96±3.21 4.40±15.86 2.70±40.76

[3.26] [6078] [3.32] [16.30] [40.43]

Shelterwood 30
0.81±2.15 -2712±4132 1.61±4.51 -7.60±8.88 5.56±108.05

[2.26] [4884] [4.71] [11.58] [106.37]

Clearcut 30
1.00±1.08 1028±3377 -1.80±1.36 5.61±8.24 -26.63±32.46

[1.44] [3392] [2.22] [9.68] [40.93]

Unmanaged 6
3.15±3.78 -925±3287 2.33±6.48 3.62±8.38 42.47±95.22

[4.67] [3140] [6.36] [8.46] [96.75]

Mixedwood 31
1.59±2.02 -589±4496 -0.65±2.89 0.72±12.02 -12.34±51.53

[2.55] [4462] [2.91] [11.85] [52.17]

Softwood 86
2.15±2.06 224±5196 0.17±3.93 -0.22±13.49 6.91±71.30

[2.97] [5171] [3.91] [13.41] [71.22]

All Plots 117
2.00±2.05 8.06±5013 -0.05±3.69 0.03±13.07 1.81±66.96

[2.87] [4993] [3.68] [13.01] [66.70]
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Table 1.5. Developed volume prediction models based on research- and operational-
grade plot data with the three most key predicator variables regarding the coefficient of
determination (R2), mean bias (MB) with standard deviation (SD), and root mean square
error (RMSE).

Sampling Type Key Variables (mean square error)
R2 MB

RMSE
[Adj R2] [SD]

(m3 ha−1)
(m3 ha−1)

Research-
Mean height (6.777)

0.828 0.20
36.33

grade
75th percentile height (6.784 )

[0.824] [± 36.74]
40th percentile height (6.873)

Operational-
30th percentile height (6.349 )

0.755 -4.21
50.81

grade
25th percentile height (6.397)

[0.749] [± 51.22]
80th percentile height (7.344)

Table 1.6. Mean bias (MB) with standard deviation (SD), and root mean square error
(RMSE) by silvicultural treatments, and species composition. The prediction models
were calibrated based on 44 research- and 44 operational-grade plot data. Mixedwood
plots had % basal area softwood < 70, and softwood-dominant plots had % basal area
softwood ≥ 70.

Volume
MB ± SD
(RMSE)

Silvicultural

Plots Research-grade Operational-grade
treatment

(n) (m2 ha−1) (m2 ha−1)
Species

composition

Diameter-limit 18
-3.09 ± 26.36 -9.90 ± 53.04

(25.88) (52.49)

Selection 26
2.73 ± 43.42 -0.28 ± 50.60

(42.67) (49.62)

Mixedwood 8
-3.96 ± 37.80 13.43 ± 26.10

(35.58) (27.86)

Softwood 36
1.07 ± 36.97 -8.13 ± 54.77

(36.49) (54.62)

All Plots 44
0.20 ± 36.74 -4.21 ± 51.22

(36.33) (50.81)
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1.4 Discussion

1.4.1 Predictor variables in LiDAR metrics

Overall, maximum tree height and volume prediction models showed relatively high

correlation between field measured values and LiDAR metrics (Table 1.3). Although some

previous studies only used the first return and the last return data Garcı́a et al. (2010); Hawbaker

et al. (2010); Kim et al. (2009); Means et al. (2000); Næsset and Økland (2002); Parker and

Glass (2004) for inventory attribute predictions, random forest allowed for the use of all return

information in this study. To explain the complex vertical structures observed at the PEF, we

expected that the first and the last returns information would not be sufficient as the 2nd, 3rd and

4th returns would sense variability under overstory canopy structures. For the volume predic-

tion model, certain percentile heights were necessary to account for multiple canopy layers in

plots, and it would be important to acquire not only overstory canopy height distribution, but also

lower height (e.g. the 20th percentile height) data to distinguish between ground and understory

vegetation.

LiDAR intensity values were available in this study, but we did not have an appropriate

tool and other auxiliary data to calibrate for flying altitudes, terrain conditions, and atmospheric

conditions for the intensity values. While the intensity values have the potential to discriminate

between hardwood and softwood species Garcı́a et al. (2010) or live and dead standing trees Kim

et al. (2009), they may not improve accuracy levels for the forest inventory attributes examined

in this analysis Goerndt et al. (2010).

1.4.2 Silvicultural treatments and species composition

The unmanaged units tended to results in large prediction errors (Table 1.4). For

instance, the unmanaged units had the highest bias in the maximum height and volume predic-

tions. Although total area of unmanaged units is smaller than other four management units, it

tends to have the highest variability and the six sampling plots might not have accounted for

this variability. Also, management units with softwood species composition greater than 80%

tended to result in large prediction errors. For example, the volume prediction tended to be
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greatly toward underestimation in the softwood species dominant plots. On the other hand,

the prediction errors were fairly constant in mixedwood plots, when compared with softwood

plots. However, the number of mixedwood plots was small in this study. The PEF is a relatively

complex forest and descriptive statistics (e.g. mean and standard deviation, Table 1.2) indicated

high variability between plots in each of management units. In general, the plots with the

highest softwood composition had multiple layer canopy structures, which can be problematic

for prediction using LiDAR metrics. In particular, balsam fir is a prolific species, and tends

to establish a number of advance seedlings under a range of overstory conditions on the PEF

Olson and Wagner (2010). Thus, this creates a rather complex vertical structure and can make

it quite difficult to develop forest inventory prediction models based solely on remotely sensed

attributes.

1.4.3 Maximum Tree Height

The maximum tree height in plots was generally underestimated, and such result was

similar to most other studies Clark et al. (2004); Magnussen and Boudewyn (1998); Magnusson

et al. (2007); Næsset (1997). A number of laser pulses likely returned from below treetops

Magnussen and Boudewyn (1998), and prediction in the softwood dominant plot had a larger

underestimation than the mixedwood plots. The RMSE of 2.75 m between field measured and

the LiDAR measured maximum heights in this study was similar to those observed by Means

et al. (2000) and Jensen et al. (2006) who also used a low pulse density LiDAR. In contrast,

Persson et al. (2002) achieved a RMSE of 0.63 m when a relatively higher pulse density LiDAR

was used. In general, higher pulse density LiDAR is necessary to achieve better accuracy levels

for maximum height predictions Zimble et al. (2003). In contrast, Magnusson et al. (2007)

pointed out that achievable accuracy levels in tree height predictions depends also on canopy

structure. For example, uniformly distributed canopy height structural stands may not require the

use of high pulse density LiDAR. In addition, the creation of digital terrain models is a difficult

task where understory vegetation grows thick Clark et al. (2004) such as in the stands examined

in this study. For example, Clark et al. (2004) had a high RMSE for tree height estimations in a

tropical rainforest, despite using high pulse density LiDAR.
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1.4.4 Stem Density

The stem density had the lowest R2 and highest prediction bias. Likewise, a majority of

other studies also reported that stem density predictions had the lowest accuracy when compared

to other forest inventory attributes Hawbaker et al. (2010); Næsset and Økland (2002); Woods

et al. (2011). Woods et al. (2011) indicated that a higher pulse density LiDAR in conjunction

with sophisticated analytical methods such as individual crown segmentation may be needed

to achieve better accuracy for stem density predictions. The prediction accuracy will probably

always be rather low in the Acadian Forest due to very high densities of natural regeneration and

the tendency for clumped spatial distributions.

1.4.5 Quadratic Mean Diameter

The accuracy of QMD model fit was similar to other previous studies. For example,

Jensen et al. (2006) had a R2 and RMSE of 0.61 and 6.31 cm, while Treitz et al. (2012) achieved

a R2 and RMSE of 0.8 and 0.8 cm, respectively. Similar to this study, both Jensen et al. (2006)

and Treitz et al. (2012) used a low pulse density LiDAR, and they found that predicted QMD

had lower accuracy levels when compared the maximum tree height, basal area and volume.

1.4.6 Basal Area

The developed plot-level basal area (m2 ha−1) had a lower R2 (0.34) when compared to

Jaskierniak et al. (2011), Næsset (2002), Jensen et al. (2006) and Gobakken and Næsset (2009),

which achieved values of 0.67 to 0.89. Næsset (2002) found that R2 varied depending on stand

age and site quality for his study area in a Norway spruce (Picea abies (L.) Karst.) and Scots

pine (Pinus sylvestris L.) dominated forest, which is a simpler stand structure when compared to

those examined in this study. Not only do the stands examined in this analysis have a relatively

complex species composition, they also have multiple layer canopy structures due to the range

of management histories present. In particular, the shelterwood systems have created very high

structural variability between plots in the same management unit.
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1.4.7 Stem Volume

The developed plot-level volume (m3 ha−1) had the highest R2 value of the various

equations evaluated in this study (0.72), which was relatively similar to other studies such as

van Aardt et al. (2006) and Hawbaker et al. (2010). Like this analysis, both of these studies

were based on low pulse density LiDARs. Magnusson et al. (2007) indicated that relative RMSE

in volume predictions increased as pulse density decreased. However, the accuracy of volume

prediction models is likely influenced by not only pulse density, but also the stand types exam-

ined. For example, Jaskierniak et al. (2011) developed models with R2 values of 0.59-0.80 based

on 2 pulses m−2 in an eucalyptus forest in Australia, while Means et al. (2000) developed models

with high R2 values based on a low pulse density in a Douglas-fir (Pseudotsuga menziesii (M.)

Franco var. menziesii) dominated forest in Oregon. In contrast, Magnusson et al. (2007) devel-

oped models with a R2 greater than 0.90 in Norway spruce and Scots pine dominated forests

in southern Sweden. When compared to the PEF, the stand structures in these aforementioned

studies are relatively simple. Like this study, van Aardt et al. (2006) and Hawbaker et al. (2010)

conducted the study in mixed softwood-hardwood forests in Virginia and Wisconsin, respec-

tively, which would have stand structures similar to the PEF. Woods et al. (2011) also worked in

a mixed softwood-hardwood forests in Ontario, Canada and were able to achieve a much lower

RMSE than our study. Woods et al. (2011) likely did this by stratifying their study area into four

stand types based on species composition rather than past silvicultural treatments. Likewise,

Anderson and Bolstad (2013) found that stratification of models by forest type was necessary to

improve prediction accuracy.

In this study, the volume prediction as well as other inventory attributes was particularly

problematic in the shelterwood and unmanaged units. Despite twenty nine and six research-grade

0.08-ha plots being established in these management units, respectively, the high variability

between plots suggests that this might be an inadequate sample. Shelterwood systems tend to

leave a small number of large trees in the overstory with the intent of promoting a great number

of young trees and seedlings in the understory. Likely, a greater number of field plots or larger
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size plots would be needed to account for this large variability Anderson and Bolstad (2013);

Gobakken and Næsset (2009).

In general, the mixedwood plots had smaller prediction biases than the softwood plots

for all inventory attributes. However, while Anderson and Bolstad (2013) predicted biomass

in a mixed softwood-hardwood forest in Wisconsin, they reported an opposite result that they

had less prediction bias in the softwood forests than mixedwood forests. Complexities of stand

structures and species composition were somewhat similar to our study site, but the number of

mixedwood plots was small in this study; thus further investigation is necessary to resolve such

a disagreement.

When comparing the research- and operational-grade plots, overall prediction errors

were smaller based on the research-grade sampling plots. Therefore, although such a comparison

has not been reported previously to our knowledge, this study suggests that reference data for

model calibrations be based on fixed radius plots with a subsample of measured tree heights

rather than using variable radius plots with limited or no height measurements.

Although a comparison between the field and LiDAR based total volume prediction

(the model calibrated by research-grade plot data) at the management unit-level showed general

agreement, both methods were quite different (R2=0.92). Given the ability to better account for

within-stand variability, the LiDAR based volume estimates should be considered superior to the

volume estimates based on conventional field measurements.

1.5 Conclusion

Development of inventory attribute prediction model based on a nonparametric regres-

sion technique allowed us to explore all potential LiDAR predictor variables and account for

highly nonlinear relationships. In general, the low density LiDAR used in this study was able to

capture the variability, despite a wide range of stand structure and species composition mixtures

examined. However, there were certain stand structures and species composition mixtures where

low density LiDAR was ineffective. Although costs of LiDAR data acquisition for large areas
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are still relatively high, this study highlights that use of LiDAR based inventory attribute predic-

tions are a valuable option for achieving efficient and effective forest assessment from a variety

of spatial scales, even in regions dominated by naturally-regenerated, mixed species stands.
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CHAPTER 2

PREDICTION OF INDIVIDUAL TREE ATTRIBUTES USING LOW DENSITY

LIDAR DATA ACROSS A RANGE OF SILVICULTURAL TREATMENTS IN

CENTRAL MAINE, USA

2.1 Introduction

Inventory data are key information for the forest management planning. The ability to

accurately project individual tree or stand level growth largely depends on inventory data quality.

Based on these projections, foresters plan thinning and other necessary management actions for

selected stands. However, it is difficult to conduct conventional field measurements for large

or remote areas, and acquiring high resolution inventory data is costly and time limited. In

addition, conventional field measurements tend to establish a limited number of sampling plots

in each stand, and it is generally assumed that they are representative of the entire stand. In the

case of Maine’s forests, uniform conditions within a stand may not be met because widely used

silvicultural treatments such as a shelterwood system tend to create greatly variable structures

and species composition within each stand.

Predictions of forest inventory attributes, especially tree height or stem volume derived

from light detection and ranging (LiDAR) metrics, have been demonstrated in various forest

types including softwood forests Gobakken and Næsset (2009); Goerndt et al. (2010); Hudak

et al. (2008); Means et al. (2000), hardwood forests Hawbaker et al. (2010); Lim and Treitz

(2004), and mixedwood forests Anderson and Bolstad (2013); Treitz et al. (2012); Woods et al.

(2011). LiDAR-based forest inventory predictions can be accomplished using either area-based

methods Anderson and Bolstad (2013); Gobakken and Næsset (2009); Hawbaker et al. (2010);

Lim and Treitz (2004); Næsset (2004); Woods et al. (2011) or individual tree-based methods

Chen et al. (2006); Falkowski et al. (2008); Jing et al. (2012); Kwak et al. (2010); Lee et al.

(2010); Popescu (2007).

In the area-based methods, forest inventory attributes are predicted for a plot-level

attribute, such as m3 ha−1 for stem volume, while model calibration data through certain field

measurements are necessary. Subsequently, parametric (e.g., stepwise regression) (e.g., Næsset
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(2002)) or non-parametric (e.g., random forest) (e.g., Stone et al. (2011); Yu et al. (2010))

statistical techniques are used to develop plot-level prediction models. Area-based methods

accurately predicted inventory attributes, such as mean tree height, volume and biomass Clark

et al. (2004); Hawbaker et al. (2010); Woods et al. (2011).

In contrast, inventory attribute predictions at high accuracy levels deploying the indi-

vidual tree-based methods require a different approach. First, individual trees must be accu-

rately discriminated, but previous results have shown that tree discrimination accuracy seemed

to depend on a choice of segmentation techniques, and forest structures. Basically, the height

of each treetop and its associated crown boundary need to be identified using LiDAR metrics.

Employing the crown maxima model with variable window size, Chen et al. (2006) reported that

about 64% of individual trees were successfully segmented in an open oak savanna woodland

in California. Comparing between the spatial wavelet analysis method and the variable window

filters, Falkowski et al. (2008) reported that about 80% and 85%, respectively, of individual

trees were successfully segmented in an Idaho mixed softwood forest, and plot crown closure

levels influenced the results. The watershed segmentation method with the extended maxima

transformation was applied by Kwak et al. (2010). These authors reported that about 50-80% of

individual trees were successfully segmented in Korean pine (Pinus koraiensis Sieb. et Zucc.)

stands, and stem density greatly influenced accuracy of the results. Employing the multi-scale

analysis and segmentation method, Jing et al. (2012) reported that approximately 61% of individ-

ual trees were successfully segmented in mixedwood forests in Ontario, Canada, and the crown

size of each tree influenced accuracy of the results.

Despite the difficulties in identifying individual trees, the approach has some key advan-

tages when compared to the area-based approach. For example, Yu et al. (2010) compared an

area-based and an individual tree-based method for mean height, mean diameter and volume

predictions in a boreal forest in Finland, and reported that the individual tree-based method

resulted in slightly lower prediction errors than the area-based method. Also, silvicultural

management plans such as single tree selections or shelterwoods can be accomplished without

physically visiting forest stands, if we could accurately segment individual trees. Additionally,
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species specific volume and biomass equations can be developed if segmentation and individual

tree species identification is successful.

Two issues to be considered when using either individual tree-based methods or the area-

based methods are the LiDAR pulse density and the complexity of the data analysis methods.

Regarding the first issue, Popescu and Wynne (2004), and Falkowski et al. (2006) reported that

pulse density greater than 5 pulses m−2 was necessary for successfully segmenting individual

trees. Low density LiDAR would be more likely to miss the highest treetop position, while

multiple pulses may hit on lower crown positions, which could cause a commission error as

those pulses might be identified as returned from different trees during the segmentation process.

The issue of low pulse density is particularly problematic for softwood species as it can result in

greater underestimations in a height prediction and overestimation in a stem density prediction

Chen et al. (2006). Additionally, low density LiDAR pulses may not adequately reach and

sense individual trees in subcanopy positions. In northern Maine’s forests, prolific advanced

regeneration positions a number of individual trees in intermediate crown positions that difficult

to discriminate.

Regarding the second issue of data analysis, previously developed individual tree-based

methods tend to be rather complex. Thus, without knowing advance image analysis theories

with equivalent programming skills, novice LiDAR analysts would rarely be able to implement

the methods. In addition, field measurements are necessary to support the area-based meth-

ods for collecting model calibration data, while the individual tree-based methods need certain

calibration data depending on target prediction attributes such as stem volume. For example,

conventional volume equations generally require diameter breast height (DBH) and tree height

(e.g. Li et al. (2012)), while crown width or area measured in the individual tree-based methods

would need to be used as a surrogate measure for DBH. In that case, a parametric or nonpara-

metric statistical technique is needed to calibrate volume prediction models.

The goal of this research was to apply an individual tree-based method using relatively

low density LiDAR data with model calibration data to predict individual tree attributes. Specific

objectives were to: (1) classify tree species type, and softwood species; (2) predict individual
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tree height and volume; and (3) assess the influence of species, canopy position, and silvi-

cultural regime on model accuracy. In particular, this research employed a relatively simple

non-parametric approach, the random forest technique Breiman (2001), to predict key individual

tree attributes in a managed mixed-species and multi-age forest.

2.2 Methods

2.2.1 Study Area

The study was conducted on the Penobscot Experimental Forest (PEF) near Orono,

Maine, USA (N44◦49’30”, W68◦39’00”) (Figure 2.1). The PEF was established in 1952 by

U.S. Forest Service, and a number of studies regarding timber management, stand dynamics,

productivity, biological diversity and more have been conducted Sendak et al. (2003). The total

area of the PEF is 1,619 ha, and various silvicultural treatments (e.g. natural area, clearcut,

shelterwood, diameter-limit cutting) have been twice replicated for long term observations. The

treatments generally range in size from 0.5 to 22.4 ha and are representative of typical northern

Maine’s silvicultural practices (Table 2.1). With a few exceptions, most treatments are replicated

in the PEF, and field data (e.g. DBH) for each of replicated treatments are collected at about 600

permanent sampling plots on a 10-year cycle.

The PEF is defined as a mixed northern conifer dominant forest as a part of Acadian

ecosystem Sendak et al. (2003), with major hardwood species including red maple (Acer rubrum

L.), birches (Betula spp.) and aspens (Populus spp.), while the major softwood species are

spruces (Picea rubens Sarg., Picea glauca (Moench) Voss and Picea mariana (Mill.) BSP),

balsam fir (Abies balsamea L. (Mill.)), northern white cedar (Thuja occidentalis L.) and eastern

white pine (Pinus strobus L.). The range of elevation above sea level is 20 - 70 m.

2.2.2 Inventory Attributes Data

For this study, six replicated silvicultural treatment units that varied from 7.25 to 17.55

ha in size were selected (Figure 2.1). Within these six management units, a total of 57 0.08-ha

(1/5th-acre) plots, with a range of 4-7 plots in each management unit, were selected for this study.
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Table 2.1. Description of silvicultural treatments in management units (MUs) in the
study area.

Area
Treat- Inven-

Plot Treatment
MU

(ha)
ment tory

(n)
Description of Silvicultural Treatment

Group
year year

4 10.1 1994 2009 4
Fixed diameter-limit cutting. Thresholds
are 14.0 cm for balsam fir, 24.1 cm for
spruce and hemlock, 26.7 cm for white
pine, 19.1 cm for cedar and paper birch,
and 14.0 cm for other hardwoods.

15 10.3 2001 2007 6
Diameter-

24 9.4 1996 2005 4
Modified diameter-limit cutting. The third
modified diameter-limit cut was applied
in 1995. Portions of the stand are in the
stem exclusion and understory reinitiation
stages of development.

limit

28 7.3 1997 2007 5

9 12.2 2003 2003 4 5-year cutting cycle. Structural goal is to
retain 24.1 m2 ha−1 (trees > 11.4 cm).16 8.6 2006 2011 6

12 12.5 1994 2004 5
10-year cutting cycle. Structural goal is to
retain 20.7 m2 ha−1 (trees > 11.4 cm).

Selection

17 10.9 1994 2005 5 20-year cutting cycle. Structural goal is to
retain 16.1 m2 ha−1 (trees > 11.4 cm).27 8.4 1997 2007 7

8 17.6 1983 2008 7

Unregulated harvest /commercial
clearcutting. This compartment was
initially cut with unregulated (”loggers
choice”) harvests. The second harvest
was a commercial clearcut in 1982. The
stands are in the stand initiation and stem
exclusion phases of development.

22 13.6 1988 2004 6

Clearcut
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Sampling plots
Treatment

12: Selection cut, 10-year cutting cycle
17 & 27: Selection cut, 20-year cutting cycle
24 & 28: Modified diameter-limit cutting
4 & 15: Fixed diameter-limit cutting
8 & 22: Unregulated harvest / Commercial clearcutting
9 & 16: Selection cut, 5-year cutting cycle

¹ Maine

Figure 2.1. The Penobscot Experimental Forest near Orono, Maine, USA (N44◦49’30”,
W68◦39’00”). At each plot, 25% of all trees with a DBH greater than 11.25 cm are
spatially mapped within a circular 0.08-ha area.

On each 0.08-ha plot, DBH was measured on all trees greater than 11.25 cm (4.5 inches). Total

height and crown position (dominant, codominant or intermediate) relative to neighbors’ crown

positions of twenty five percent of those DBH trees were measured between 2003 and 2011 and

were spatially mapped based on azimuth and distance from each plot center. Each plot center

coordinate was recorded by a Trimble GeoXH 6000 GPS unit with a Zephyr2 external antenna.

At each plot, we collected a minimum of 100 waypoints, and the post correction was carried out

using base stations around the PEF. The coordinates were set to UTM NAD83 Zone 19.

Given the differences in dates between tree measurement and acquisition of the LiDAR

data in the summer of 2012, the Acadian Variant of the Forest Vegetation Simulator was applied

Weiskittel et al. (2012) to project DBH and height to a common year with the number of projec-

tions ranging from 1 to 9 annual cycles. Based on simulated DBH and height, total tree volume

was estimated using a species-specific taper equation Li et al. (2012); Weiskittel and Li (2012).

Total height and stem volume of 1,694 tree-level data in the eleven management units were

available for analysis (Table 2.2).
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Table 2.2. Examined attributes (mean ± standard deviation) by management unit (MU).

MU

Number
DBH (cm) Height (m) Volume (m3)of

sampled
trees Mean Min Mean Min Mean Min
(n) (SD) Max (SD) Max (SD) Max

4 122
18.7 12.3 11.60 5.37 0.173 0.040
(6.0) 36.1 (2.44) 18.60 (0.140) 0.786

15 116
18.5 12.8 11.13 5.23 0.156 0.048
(4.5) 32.4 (2.69) 1.91 (0.103) 0.527

8 173
16.4 11.3 11.23 2.99 0.117 0.032
(3.3) 26.9 (2.15) 15.98 (0.061) 0.380

22 62
19.5 14.5 10.22 4.08 0.157 0.063
(4.3) 32.6 (2.33) 15.57 (0.097) 0.513

9 135
25.0 13.1 15.67 6.67 0.487 0.056

(10.4) 72.0 (4.35) 30.44 (0.647) 5.209

16 241
24.0 11.5 15.89 6.15 0.430 0.040

(10.3) 53.7 (3.84) 24.6 (0.450) 1.853

12 148
23.5 12.0 15.12 5.01 0.382 0.044
(8.9) 51.4 (3.88) 23.10 (0.370) 1.853

17 127
27.1 12.8 15.97 5.03 0.530 0.065
(9.5) 61.3 (4.32) 27.70 (0.487) 3.519

27 176
22.3 12.5 13.74 3.80 0.340 0.049
(9.2) 52.3 (4.14) 26.51 (0.382) 1.965

24 154
22.4 12.9 15.28 5.15 0.325 0.043
(6.8) 38.5 (3.89) 24.15 (0.252) 1.056

28 233
22.1 12.2 14.50 2.84 0.324 0.023
(8.0) 44.9 (3.86) 23.68 (0.304) 1.563

Overall 153
21.8 12.5 13.67 4.76 0.311 0.046
(7.4) 45.6 (3.44) 21.12 (0.299) 1.771
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2.2.3 LiDAR System Specifications

In late June 2012, airborne discrete-return LiDAR data were acquired using a VQ-480

(Riegl USA, Orlando, Florida), a component of NASA Goddard’s LiDAR, Hyperspectral and

Thermal (G-LiHT) airborne imager system Cook et al. (2013). The sensor generated the pulse

repetition frequency of 150 kHz, and the laser pulse intensity was 1550 nm with the scan angle

of < 15◦ from the nadir. Mean laser point density was about 3.0 pulses m−2 with a footprint of

30 cm, and the sensor collected up to 4 pulse returns.

2.2.4 LiDAR Data Processing and Model Calibration Predictions

All LiDAR data processing including the creation of a digital terrain model and LiDAR

metrics were accomplished in FUSION v3.30 McGaughey (2013). FUSION generated a number

of potential predictor variables for individual tree height and volume predictions from raw

LiDAR data. Ninety eight potential predictor variables were generated for this study. FUSION

extracted predictor variables from the raw LiDAR data at each of mapped stem locations in

the field. Although horizontal accuracy in geodetic information in LiDAR data is generally

controlled within sub-meter accuracy Evans et al. (2009), it is still difficult to assess horizontal

accuracy. To account for certain horizontal error and different crown shapes and sizes among

individual trees, FUSION metrics were extracted for a 4 m radius circular area around the

mapped individual trees locations. Preliminary results indicated that better model fit (greater

R2 values) was achieved based on the LiDAR metrics data extracted from 4 m radius circular

plots to compare with other circular plot sizes.

Although understory vegetation heights varied largely depending on silvicultural treat-

ments in each management unit, we disregarded pulse return within 1 m above ground, because

preliminary results indicated better model fit during the LiDAR data extraction. A few examples

of predictor variables in the LiDAR metrics were maximum height, the number of 1st return

pulses in the 90th percentile height, and standard deviation of the number of 1st return pulses.

Predictor variables in the LiDAR metrics tend to be highly correlated with others, and

some variables would not meet normal distribution criteria Hudak et al. (2008); Li et al. (2008);
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Stone et al. (2011). These issues violate the assumption inherent to linear regression models.

In addition, variable selection in high dimensionality metrics is not a simple process and typi-

cal data transformations might not be effective for highly skewed or bimodal data. Although

Akaike’s Information Criteria (AIC) is a popular approach for variable selections in stepwise

regression, the developed regression models tend to have model overfit issues, which are gener-

ally not stable when used outside of the calibration data. Therefore, the development of inventory

prediction models based on simple and multiple linear regressions would not be suitable for this

type of dataset.

Alternatively, the random forest technique proposed by Breiman (2001), a nonparamet-

ric approach, may be a more effective technique. Random Forest is developed based on the

regression trees algorithm, where predictor variables are split to grow a number of nodes to

select the best predictor variables. In the random forest approach, the regression tree process is

continued multiple times and compared against a bootstrapped validation dataset. A key advan-

tage in random forest is that a greater number of predictor variables of various types (categorical,

continuous, and binary) can be handled, and the relative importance of each predictor variable

can be estimated during the model calibration process. In this analysis, the random forest algo-

rithm was run iteratively in that the model initially included all covariates, the least influential

covariate dropped, and the model reran until there were only 5 covariates, which preliminary

analysis had suggested was most effective for prediction accuracy.

To deploy supervised classifications based on the random forest technique in our study,

we assumed that overall crown shapes and branch patterns between hardwood and softwood

species are different. Among softwood species (spruces (black, white, red), balsam fir, and

other softwood) in the PEF, those tree elements are different enough that certain variables in

the LiDAR metrics could correlate to shapes of softwood species. Classified species type data

and classified softwood species data were used as a covariate for height and volume predictions.

Consequently, three different sets of calibration data were used to predict individual tree height

and volume: (1) LiDAR metrics only; (2) LiDAR metrics with classified species type (hardwood

and softwood); and (3) LiDAR metrics with classified softwood species (spruces (black, white,

red), balsam fir and other softwood).
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The ‘randomforest’ package Liaw and Wiener (2002) in R v3.0.1 R Development Core

Team (2012), was used to calibrate the height and volume prediction models, and to classify

species type and softwood species. Each of calibrated models was evaluated using the coefficient

of determination (R2), mean bias and absolute root mean square error (RMSE) between field

measured and model predicted individual tree height and volume. To examine the performance

of the various models, the bias (observed - predicted) was examined graphically with the use of

lowess regression splines. To simplify interpretation of the differences between the original six

different silvicultural treatments, the treatments were narrowed down to three broad categories,

which included clearcut, diameter-limit and selection (Table 2.1). Classification accuracy for

classified species type and softwood species was reported in confusion matrices Congalton and

Green (1993).

2.3 Results

A total of 1,694 trees were available for analysis with 82% being softwoods (Table 2.2).

Overall, the developed models had a weak agreement with field measured values as the RMSE

was relatively large (Table 2.3)

2.3.1 Species Type Classification and Softwood Species Classification

A pulse count-related variable was selected as the most important classification variable

for predicting whether trees were hardwoods or softwoods (Table 2.4a). While overall accuracy

was about 85%, the Kappa statistic Rosenfield and Fitzpatrick-Lins (1986) was near 0%. This

small Kappa statistic indicated that classification results were purely by chance. In particular, the

random forest technique did not accurately classify hardwoods when compared with softwood

as producer’s and user’s accuracy in hardwood were greatly different (Table 2.4b). Producers

accuracy is reflected to omission errors, and users accuracy is reflected to commission errors.

For the 1,394 softwood trees, random forest was again used to classify them into spruces

(black, red and white), balsam fir, or other softwood. A height-related variable was selected as

the most important classification variable (Table 2.5a). While overall accuracy was about 52%,
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Table 2.3. Developed prediction models with the three most important predictor vari-
ables. The classified species type and the classified softwood species were derived
through supervised classification using the random forest technique based on the LiDAR
metrics.

Attribute Covariates Key Variables (mean square error)
R2 MB

RMSE
(Adj R2) (SD)

Height
LiDAR metrics

Percent 1st returns above mean (13.0)

3.47
Percent all returns above mean (15.3)

0.269 0.011
(m)

20th percentile height (16.0)
(0.269) (3.47)

75th percentile height (21.2)
95th percentile height (22.9)

Height
LiDAR metrics

10th percentile height (10.7)

3.41
+

75th percentile height (11.7)
0.292 0.007

(m) Classified
10th percent height (11.8)

(0.291) (3.41)
spp type

95th percentile height (14.9)
Classified species type (17.3)

Height
LiDAR metrics

All returns above 1 m (9.0)

+
Mean height (11.3)

0.378 0.018
3.26(m) Classified

90th percentile height (12.9)
(0.377) (3.26)

sw spp
95th percentile height (13.4)
Classified softwood species (29.7)

Volume
LiDAR metrics

30th percentile height (10.8)
70th percent height (10.9)

0.166 0.000
0.37(m3)

99th percentile height (10.9)
(0.166) (0.37)90th percentile height (11.0)

95th percentile height (12.1)

Volume
LiDAR metrics

80th percentile height intensity (10.7)

+
Elevation variance (10.9)

0.165 0.002
0.37(m3) Classified

30th percentile height (12.5)
(0.165) (0.37)

spp type
Height standard deviation (12.7)
80th percent height (12.9)

Volume
LiDAR metrics

Percent 1st returns above mean (6.5)

+
30th percentile height (9.2)

0.296 0.000
0.36(m3) Classified

Height standard deviation (11.5)
(0.295) (3.26)

sw spp
70th percentile height (11.8)
Classified softwood species (31.0)
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Kappa statistic was 0%. In particular, the random forest technique did not classify spruces as

both producer’s and user’s accuracy were below 50% (Table 2.5b).

2.3.2 Individual Tree Height Prediction

Using only LiDAR metrics, the model slightly underestimated tree height by 0.01 ±

3.47 m regardless of silvicultural treatments and species type, while an agreement between field

measured and model predicted heights was weak (Table 2.3). Two return count-related variables

were selected as the most important predictor variables followed by three height-related vari-

ables (Table 2.3). In general, tree heights in the clearcut and diameter-limit units were slightly

overestimated, while trees in the selection units were underestimated (Table 2.6 and Figure 2.2a.

This model underestimated hardwood to a greater extent than softwood heights (Table 2.6 and

Figure 2.2b). Tree heights in the dominant crown position were also underestimated, and overes-

timated in the codominant and intermediate crown positions (Figure 2.2c). In particular, trees in

the intermediate crown position were increasingly overestimated with greater predicted heights.

Based on the LiDAR metrics with the classified species type, the model performed

slightly better as it generally underestimated tree height by 0.01 ± 3.41 m regardless of silvicul-

tural treatment and species type (Table 2.3). The classified species type was selected as the fifth

key predictor variable and the other four variables were height-related variables. With respect to

the silvicultural treatments, species type and crown position, the general tendencies of accuracy

and precision were similar to the result of the model based on the LiDAR metrics only (Table

2.7 and Figures 2.3a,b,c).

Using the LiDAR metrics with the classified softwood species as a covariate produced

a model that underestimated the softwood tree height by 0.02 ± 3.26 m (Table 2.3). After strat-

ification to only softwood species, an agreement between field measured and model predicted

heights was improved when compared to the previous models. The classified softwood species

type was selected as the fifth key predictor variable, and the other four variables were return

count- and height-related variables. As similar to the previous two height prediction models,

this model slightly overestimated softwood tree heights in the clearcut and diameter-limit units,
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Table 2.4. The results of species type classification (hardwood or softwood) through
supervised classification using the random forest technique based on the LiDAR metrics.
(a) The five most key variables for the species type classification; and (b) accuracy
assessment in the species type classification.

(a)

Key Variables Mean Decrease Accuracy Mean Decrease Gini

Total pulse return counts 0.0201 95.77
Maximum height 0.0331 95.72
Intensity standard deviation 0.0358 107.35
95th percentile height intensity 0.0298 97.50
Percent all returns above mean 0.0145 88.59

(b)

Observed

Hardwood Softwood Total
User’s Commission

accuracy error

Pr
ed

ic
te

d

Hardwood 101 199 300 0.34 0.66

Softwood 51 1343 1394 0.96 0.04

Total 152 1542 1694

Producer’s
0.66 0.87

accuracy
Omission

0.34 0.13
error

Overall accuracy Kappa statistics
0.85 0.00
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Table 2.5. The results of the softwood classification (spruces, balsam fir and other soft-
wood) through supervised classification using the random forest technique based on the
LiDAR metrics. (a) The five most key variables for the softwood species type classifi-
cation; and (b) accuracy assessment in the softwood species classification.

(a)

Key Variables Mean Decrease Accuracy Mean Decrease Gini

Maximum height 0.0356 164.57
Variance in height 0.0256 175.50
Intensity standard deviation 0.0144 163.97
75th percentile height intensity 0.0649 200.00
Percent all returns above mean 0.0313 178.35

(b)

Observed

Spruces Balsam fir Other sw Total
User’s Commission

accuracy error

Pr
ed

ic
te

d

Spruces 76 83 134 293 0.26 0.74

Balsam fir 47 284 162 493 0.58 0.42

Other sw 51 138 419 608 0.69 0.31

Total 174 505 715 1394

Producer’s
0.44 0.56 0.59

accuracy
Omission

0.56 0.44 0.41
error

Overall accuracy Kappa statistics
0.56 0.00
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Table 2.6. Mean (MB) with standard deviation (SD), and root mean square error
(RMSE) by silvicultural treatments, species type (hardwood or softwood), and crown
positions. The model was developed based on only LiDAR metrics.

Silvicultural treatment
Trees

Height Volume
Species type

(n)
MB ± SD (RMSE) MB ± SD (RMSE)

Crown position (m) (m3)

Clearcut 239 -0.35 ± 1.89 (1.92) -0.0352 ± 0.0887 (0.0952)
Diameter-limit 642 -0.22 ± 3.32 (3.32) -0.0350 ± 0.2712 (0.2732)
Selection 813 0.30 ± 3.90 (3.91) 0.0375 ± 0.4770 (0.4781)
Hardwood 300 1.12 ± 2.70 (2.92) -0.0639 ± 0.2050 (0.2144)
Softwood 1394 -0.23 ± 3.57 (3.58) 0.0134 ± 0.3991 (0.3992)
Dominant 751 2.07 ± 2.93 (3.58) 0.2060 ± 0.4238 (0.4710)
Codominant 526 -0.50 ± 2.59 (2.64) -0.0933 ± 0.2052 (0.2252)
Intermediate 417 -3.05 ± 2.78 (4.13) -0.2544 ± 0.1942 (0.3199)

All Trees 1694 0.01 ± 3.47 (3.47) -0.0003 ± 0.3733 (0.3732)

Table 2.7. Mean (MB) with standard deviation (SD), and root mean square error
(RMSE) by silvicultural treatments, species type (hardwood or softwood), and crown
positions. The model was developed based on LiDAR metrics with classified species
type.

Silvicultural treatment
Trees

Height Volume
Species type

(n)
MB ± SD (RMSE) MB ± SD (RMSE)

Crown position (m) (m3)

Clearcut 239 -0.56 ± 1.85 (1.92) -0.0394 ± 0.0904 (0.0985)
Diameter-limit 642 -0.29 ± 3.23 (3.24) -0.0334 ± 0.2732 (0.2750)
Selection 813 0.41 ± 3.83 (3.85) 0.0420 ± 0.4751 (0.4766)
Hardwood 300 0.18 ± 2.68 (2.69) -0.0622 ± 0.2072 (0.2160)
Softwood 1394 -0.03 ± 3.54 (3.54) 0.0157 ± 0.3985 (0.3987)
Dominant 751 1.98 ± 3.00 (3.60) 0.2041 ± 0.4295 (0.4753)
Codominant 526 -0.46 ± 2.51 (2.55) -0.0864± 0.1920 (0.2104)
Intermediate 417 -2.96 ± 2.26 (3.95) -0.2507 ± 0.1988 (0.3200)

All Trees 1694 0.001 ± 3.42 (3.41) -0.0019 ± 0.3730 (0.3729)
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Figure 2.2. Individual tree height prediction model was developed based on LiDAR
metrics. Scatterplot of tree height prediction bias (observed - predicted; m) over LiDAR
predicted values with lowess regression splines for the different silvicultural treatments
(a), species type (b), and crown positions (c).
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Figure 2.3. Individual tree height prediction model was developed based on LiDAR
metrics. Scatterplot of tree height prediction bias (observed - predicted; m) over LiDAR
predicted values with lowess regression splines for the different silvicultural treatments
(a), species type (b), and crown position (c).

46



Table 2.8. Mean (MB) with standard deviation (SD), and root mean square error
(RMSE) by silvicultural treatments, species type (hardwood or softwood), and crown
positions. The model was developed based on LiDAR metrics with classified softwood
species.

Silvicultural treatment
Trees

Height Volume
Softwood species

(n)
MB ± SD (RMSE) MB ± SD (RMSE)

Crown position (m) (m3)

Clearcut 183 -0.42 ± 1.93 (1.97) -0.0371 ± 0.0962 (0.1029)
Diameter-limit 516 -0.33 ± 3.12 (3.14) -0.0517 ± 0.2424 (0.2477)
Selection 695 0.40 ± 3.58 (3.60) 0.0484 ± 0.4606 (0.4628)
Spruces 293 0.52 ± 3.53 (3.57) -0.0344 ± 0.3960 (0.3968)
Balsam fir 493 -0.20 ± 2.15 (2.15) -0.0269 ± 0.0852 (0.0892)
Other softwood 608 -0.05 ± 3.81 (3.80) 0.0344 ± 0.3960 (0.3968)
Dominant 588 1.95 ± 2.81 (3.42) 0.1989 ± 0.4286 (0.4722)
Codominant 431 -0.28 ± 2.45 (2.46) -0.0810 ± 0.1899 (0.2062)
Intermediate 375 -2.67 ± 2.67 (3.77) -0.2183 ± 0.2014 (0.2968)

All Trees 1394 0.02 ± 3.26 (3.26) -0.0001 ± 0.3619 (0.3618)

while underestimating in the selection unit (Table 2.8 and Figure 2.4a). The model underesti-

mated the heights in the dominant crown position, while overestimating in the codominant and

intermediate crown positions (Figure 2.4c). Also, in general, this model slightly underestimated

spruces’ heights (Table 2.8).

2.3.3 Stem Volume Prediction

Similar to the tree height model, an individual tree volume prediction model was devel-

oped based on LiDAR metrics only. All selected predictor variables were height-related variables

(Table 2.3). The model had noticeable bias for overestimating volume by < 0.01 ± 0.37 m3

(Table 2.3 and Figures 2.5a,b,c) . Unlike the tree height prediction model based on LiDAR

metrics only, this model underestimated softwood, and overestimated hardwood volumes (Table

2.6). However, like the height prediction model, this model underestimated tree volumes in

the dominant crown position, while overestimating in the codominant and intermediate crown

positions (Figure 2.5c).

An individual volume prediction model was developed based on the LiDAR metrics

with the classified species type (hardwood or softwood), but the classified species type was not
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Figure 2.4. Individual tree height prediction model for softwood species was developed
based on LiDAR metrics with classified softwood species. Scatterplot of tree height
prediction bias (observed - predicted; m) over LiDAR predicted values with lowess
regression splines for the different silvicultural treatments (a), softwood species (b),
and crown positions (c).
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Figure 2.5. Individual tree volume prediction model was developed based on LiDAR
metrics. Scatterplot of stem volume prediction bias (observed - predicted; m3) over
LiDAR predicted values with lowess regression splines for the different silvicultural
treatments (a), species type (b), and crown positions (c).
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selected as an important predictor variable, and there was no appreciably improvement in model

predictions (Table 2.7 and Figures 2.6a,b,c).

An individual tree volume prediction model for softwood species (spruces, balsam fir

or other softwood) was developed based on the LiDAR metrics with the classified softwood

species. This model slightly overestimated the volume by < 0.01 ± 0.36 m3 (Table 2.3).

After stratification to focus on softwood species, an agreement between field measured and

model predicted volumes was improved when compared to the previous models. The classi-

fied softwood species type was selected as the fifth important predictor variable and the other

four variables were pulse return count- and height-related variables. As similar to the previ-

ous two volume prediction models, this model slightly overestimated softwood volumes in the

clearcut and diameter-limit units, while underestimating in the selection unit (Table 2.8 and

Figure 2.7a). The softwood volumes in the dominant crown position were underestimated, while

overestimated in the codominant and intermediate crown positions (Figure 2.7c). Also, this

model slightly overestimated both spruce and balsam fir volumes (Table 2.8).
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Figure 2.6. Individual tree volume prediction model was developed based on LiDAR
metrics with classified species type. Scatterplot of tree volume prediction bias (observed
- predicted; m3) over LiDAR predicted values with lowess regression splines for the
different silvicultural treatments (a), species type (b), and crown positions (c).

51



(a)

−2

−1

0

1

2

3

4

5

0 1 2 3

LiDAR predicted volume ( m
3
 )

B
ia

s

Clearcut Diameter−limit Selection

(b)

−2

−1

0

1

2

3

4

5

0 1 2 3

LiDAR predicted volume ( m
3
 )

B
ia

s

basalm fir other softwood spruces

(c)

−2

−1

0

1

2

3

4

5

0 1 2 3

LiDAR predicted volume ( m
3
 )

B
ia

s

Codominant Dominant Intermediate

Figure 2.7. Individual tree volume prediction model for softwood species was developed
based on LiDAR metrics with classified softwood species. Scatterplot of tree volume
prediction bias (observed - predicted; m3) over LiDAR predicted values with lowess
regression splines for the different silvicultural treatments (a), softwood species (b),
and crown position (c).
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2.4 Discussion

Individual tree height and volume prediction models showed weak correlations between

field measured and model predicted values. Although mean bias in each model was relatively

small, the RMSE was large (Table 2.3). While some previous area-based method studies only

used the first and last LiDAR return data Garcı́a et al. (2010); Hawbaker et al. (2010); Kim

et al. (2009); Magnusson et al. (2007), this study used all available return data in our LiDAR

metrics to develop individual tree prediction models. Smaller trees are difficult to discriminate

because those trees tend to be found in an intermediate crown position where sufficient amount

of pulses would not reach Ørka et al. (2009). Because forest stand structures in the PEF are

generally described as a mixed species with multi-age structure, multiple pulse return data would

be needed to provide a better depiction of individual tree characteristics.

Also, erroneous georegistration between individual tree locations and LiDAR point

cloud seemed to leave a profound effect on the individual tree height and volume predictions

in this study. To predict aboveground carbon density, Asner et al. (2009) reported that prediction

errors were negligible due to erroneous georegistration between calibration plots and extracted

LiDAR metrics plots in an area-based approach. However, Mascaro et al. (2011) reported that

prediction error in aboveground carbon density tended to increase with increasing spatial reso-

lution (e.g. smaller calibration plots in size).

2.4.1 Species Type Classification and Softwood Species Classification

Although intensity-related variables were available in our LiDAR metrics, we did not

have an appropriate tool and other auxiliary data to calibrate for flying attitudes, terrain condi-

tions, and atmospheric conditions for the intensity values. While Korpela et al. (2010) cali-

brated intensity values based on range-distance, and used the random forest technique to clas-

sify Norway spruce, Scots pine and birch, selected important classification variables were all

intensity-related variables. Ørka et al. (2009) found that uncalibrated intensity variables were

useful in classification between Norway spruce, Scots pine and birch. However, during both

species type and softwood species classifications in our study, the random forest technique
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selected only one intensity-related variable as one of important classification variables, while

mainly utilizing height-related variables (Tables 2.4a,b).

In the species type classification, kappa statistic in this classification was near 0%,

which indicated that the agreement of correctly classified softwood and hardwood was purely

by chance. Hardwood crowns tend to have different shapes depending on species, position in

the crown and stem density when compared to softwoods. Thus, producer’s accuracy in the

hardwood classification was large (Table 2.5b). Korpela et al. (2010) had relatively lower classifi-

cation accuracy in birch than Scots pine and Norway spruce, and noted that relative height differ-

ences within birch influenced in intensity values returned from the uppermost canopy surfaces.

Vauhkonen et al. (2009) used intensity- and height-related variables to classify Norway spruce,

Scots pine and birch, but a large number of birch tended to be misclassified as Scots pine while

a classification between Norway spruce and Scots pine had a better result. Using full waveform

LiDAR, Reitberger et al. (2008) reported that hardwood crown surface conditions were varied

compared to softwoods, which would have resulted in diverse reflectance from the hardwood

crowns. Additionally, Reitberger et al. (2008) and Vauhkonen et al. (2009) found that LiDAR

data acquisition under a leaf-off condition had a better classification result in the species type

classification because returned intensity-related variables were much different between softwood

and hardwood.

Softwood species crown shapes were relatively similar among the species examined;

therefore, height-related variables were not effective for classifying softwood species. As kappa

statistics was 0%, this classification result was purely by chance. While Holmgren and Pers-

son (2004) mainly used intensity-related variables to classify between Scots pine and Norway

spruce, they had a lower classification accuracy for Scots pine because crown shapes of Scots

pine varied depending on growth conditions. On the other hand, Suratno et al. (2009) reported

that similar pulse return characteristics were observed among different species during a species

classification process if those species grow in similar stand conditions such as a crown closure

level or stem density; however, pulse intensity characteristics were dissimilar among species.

Ørka et al. (2009) and Vauhkonen et al. (2010) found that different height among different

species did not much influence in intensity-related variables. Donoghue et al. (2007) reported
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that intensity value was the most important variable to classify Sitka spruce (Picea sitchensis)

and lodgepole pine (Pinus contorta var. contorta) in mixed Sitka spruce-lodgepole pine plots

despite the calibration difficulty in intensity values. Thus, for future refinements in our research,

the model needs to include appropriately calibrated intensity-related variables. Also, LiDAR

systems equip, in general, one spectral wavelength at about 1064 nm, a near infrared region.

The LiDAR sensor used in this study, the G-LiHT equips a spectral wavelength of 1550 nm

(shortwave region), which may be less suited for species classification. Additionally, Li et al.

(2013) reported that greater pulse density improved individual tree classification accuracy, and

return pulses should be described in both vertical distribution and horizontal distribution for each

individual crown.

2.4.2 Individual Tree Height Prediction

Although an agreement between field measured and model predicted individual tree

height in all three models was weak (Table 2.3), one notable result was that predicted individual

tree heights were associated with field-assessed crown positions. This association would be

improved if we could improve horizontal accuracy between stem mapped trees and LiDAR point

cloud. In the tree height prediction models, tree heights in the dominant crown position were

constantly underestimated with greater predicted height. Most previous studies reported that

LiDAR sensors tended to underestimate tree heights Clark et al. (2004); Næsset (1997) because

low pulse density LiDAR likely resulted in insufficient direct hit on treetops Falkowski et al.

(2006); Zimble et al. (2003). Although Wang and Glenn (2008) reported that heights of the

conical crown shape of softwood trees tended to be underestimated to a greater extent than an

ellipsoidal crown shape of hardwood trees, this study observed an opposite result as hardwood

heights were generally underestimated. One reason might be that hardwood crown shapes in

the PEF might be described as similar to a narrow and rounded shape due to increased crown

competition. Another reason might be that the low pulse density LiDAR sensor used in this study

could not sufficiently sense individual hardwood trees in the intermediate crown position, which

were partially overtopped by trees in the dominant and codominant crown positions. Gonzalez-

Ferreiro et al. (2013) noted that some pulses were reflected from the inside of crown rather than

55



crown surfaces. Brandtberg et al. (2003) found that larger trees tended to be underestimated, but

smaller trees were overestimated in height predictions. Vauhkonen et al. (2010) reported that

height prediction accuracy was better in larger DBH trees than smaller DBH trees. In addition,

although some pulses would have been returned from trees below the dominant crown trees,

these pulse returns would be difficult to associate with trees in the intermediate crown trees from

pulses returned within a dominant or codominant tree crown Brandtberg et al. (2003). Based

on our results, those lower canopy LiDAR pulses were returned primarily from dominant or

codominant crowns, which resulted in overestimated heights of these smaller trees.

While we added the classified species type as an additional covariate in the height predic-

tion model, it did not much improve the predictions greatly. However, when we compared the

field observed species type as a covariate (instead of the classified species type), the R2 value

was again barely improved. Therefore, it is inferred in this study that there was a limited rela-

tionship between individual tree height and species type due to the wide range of tree height

between and within hardwood and softwood species in the mixed forest environment of the PEF.

However, in the individual softwood tree height prediction, an additional covariate of classified

softwood species resulted in a slightly better model fit. An explanation could be that certain soft-

wood species such as balsam fir were often observed in the codominant or intermediate crown

positions, while spruces tended to be found in the dominant crown position in the PEF.

2.4.3 Stem Volume Prediction

An agreement between field measured and model predicted individual tree volume in

all three models was weak (Table 2.3). The field measured volume was derived using a species-

specific taper equation, which requires individual tree DBH data besides total height data.

Although this study did not report individual tree DBH predictions based on LiDAR metrics,

we had low model fits during preliminary analysis. Therefore, due to relatively low accuracy

of both height and DBH predictions, our individual tree method would not be an appropriate

approach for the individual tree volume prediction. Yu et al. (2011) used similar pulse density

LiDAR data as our study to deploy an individual tree-based method for volume prediction in a

Scots pine and Norway spruce dominating boreal forest. Based on successfully matched trees
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between segmented and field located trees, relative RMSE of 21.58% was achieved. Also, Yu

et al. (2010) and Yu et al. (2011) reported that omission errors during segmentation process

in an individual tree-based method largely affected volume prediction while segmentation

accuracy depended on stand structures. For example, segmentation accuracy was higher with

lower stem density plots or larger DBH trees; therefore, higher volume prediction accuracy

could be achieved for the lower stem density plots or the larger DBH trees in the individual

tree-based method. Breidenbach et al. (2010) found that RMSE in volume prediction for birch

and trembling aspen (Populus tremula) tended to be greater than Norway spruce and Scots

pine although 91% of volume were comprised by these softwood species in their study site in

Norway. In our study, the volume prediction model for softwood trees had a better model fit than

the model for both hardwood and softwood trees. Thus, a high accuracy result in the species

type classification would improve the volume predictions to stratify trees between softwood and

hardwood.

2.4.4 Conclusion

Based on low density LiDAR data, the individual tree-based method deployed in this

study for tree height and volume predictions did not result in high level accuracy and preci-

sion when compared to previously reported studies. While we initially hypothesized that the

LiDAR metrics and individual tree height would be correlated to some degree, the low density

LiDAR data used in this analysis was not sufficient for tree-level predictions. Also, we hypoth-

esized that each tree species would have a rather unique crown shape and branching pattern,

but our LiDAR data was not capable of distinguishing between either hardwood or softwood

species. One possible explanation is that the mixed species and multi-age forest structure of the

PEF promoted high competition for both hardwood and softwood trees, which has resulted in

similar crown characteristics between and within a species. For future work, it is important to

investigate how horizontal accuracy between LiDAR point cloud and individual trees in the field

are matched. Also, it should be compared forest inventory predictions deployed by area- and

individual tree-based approaches.
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