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Abstract. The importance of context awareness in support of computational 

services has been well recognized with applications in areas such as real-time 

location-based services, dynamic social network collaboration, situational 

health monitoring, indoor navigation, and the Internet of Things among others. 

The role of context in these services is generally to support more responsive 

service delivery for human users or agents. The focus of this paper is a context 

model for environmental observations, where knowledge of spatial and tem-

poral contextual differences among observations is important for interpretation 

and analyses as well as facilitating sharing and reuse of data outside the original 

collection context. This paper builds on the OBOE ontology for observation da-

ta and expands spatial and temporal context settings through additional ontolo-

gies that support flexible spatial contextual consruction in terms of places and 

relationships among places and temporal contextual construction in terms of 

events and event relationships. The goal is to capture spatial and temporal con-

texts for observations to support machine as well as human interpretation and 

analysis. 

Keywords: spatial-temporal context, ontology based context model, gazet-

teer 

1 Introduction 

Context awareness is employed to support intelligent decisions and automate respons-

es to situations and events that have occurred. Context awareness is important for 

customizing information services in ways appropriate to users’ characteristics, devic-

es, spatial and temporal settings, and activities. Many context dependent services have 

been investigated including location based services, social media, driver assistance 

services, indoor navigation, and health care situation monitoring [1]. These applica-

tions have tended to focus on personalization and adaptability of services to user con-

texts. An area in which context is also very important but has received less attention is 

in the provision of context for scientific observations [2]. Environmental observations 
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are inevitably influenced by their spatial and temporal settings which could be more 

explicitly modeled for improved scientific interpretation and analysis of the data.  

 

Contextual information for observation data is often only implicitly available 

through database schema labels, from plotting locations on a map, or through natural-

language based metadata. Observation metadata may include location and time 

stamps as well as information about the observer and observation protocols. A GPS 

coordinate location is easy to collect and frequently serves as the reported location of 

an observation, but a coordinate alone offers little to no information about a spatial 

setting. Similarly a time stamp locates an observation in time but offers little in the 

way of temporal context for an observation. For example, water samples taken for 

water quality assessment may have different spatial settings such as near a point 

source, at the outlet of a particular stream, or in an urban versus a rural setting. Simi-

larly, water samples have very different temporal context if taken before, during or 

after a precipitation event. While water quality experts are well aware of contextual 

related influences on water quality parameters, such context information is typically 

not explicitly captured in formats conducive for automated search and analysis. 

 

What constitutes spatial and temporal context can be difficult to define and bound, 

and thus some flexibility and vagueness in specifying spatial and temporal context is 

desirable. This paper expands on previous work and the OBOE ontology for observa-

tion data [3] and explores the use of places, place to place relationships, events and 

event relationships as building blocks for an open ended spatial and temporal context 

model. Places are understood to refer to named instances of regions or features [4]. 

They need not have explicit spatial bounds or alternatively they may have many pos-

sible spatial representations. A gazetteer that models places and which is enhanced to 

model relationships among places is proposed as the basis for flexible spatial context 

model. Similarly, events and relationships among events provide the basis for tem-

poral context development. Section 2 of the paper reviews previous work on concepts 

of context and context models. Section 3 presents the proposed place and event based 

spatial-temporal context model for observations. Section 4 illustrates the proposed 

observation context model for a specific environmental monitoring setting and Sec-

tion 5 concludes with some issues for future research. 

2 Review of Context and Context Models 

Many definitions of context exist. Dey [5] defined context as any information used to 

characterize the situation of an entity where an entity could be a person, location, 

object, or event. Context in location based services, for example, typically identifies 

user location (an X,Y coordinate), an approximate neighborhood, who the user is 

with, and what activities they are engaged in. Context in wireless sensor networks 

(WSN) has been defined to include sensor node resources, network characteristics, 

network states, and energy management [6]. Context is also seen as having scale or 

different levels of detail encompassing local or fine to large and coarse scales or 



granularities [6]. One of the complexities of context is its own context dependencies, 

and a challenging issue is managing the dynamics of context which in a worst case 

may be in constant flux [7,8].  

 

A context model has been described as a structure for the representation of situa-

tions in the real world for interpretation and exchange by machines. Context models 

specify the entities and relations among entities needed to characterize a situation or 

setting and have included representation as key-value pairs [5], object-role models 

[9], and spatial models [10,11,12].  

 

Ontology based context models have been recently introduced to improve interop-

erability, reusability, and context based reasoning [9], [13, 14]. Several ontology 

based context models include similar context classes and entities. Becker and Nicklas 

[15] identify primary context as including identity of entities, location, and time, and 

most context models include these as high level classes [14], [16]. Becker and Nicklas 

[15] also characterize four primary ways in which context can be utilized. This paper 

focuses on context based tagging, the tagging of information to context to allow later 

action based on this context.  

 

The development of context models has gone hand in hand with substantial growth 

in new sources of context information. New technologies, including smart phones, 

smart devices, and sensor networks serve as both consumers and providers of context 

information. A number of recent context models assume a sensor based information 

gathering layer where information from sensor streams is analyzed for recognized 

activities or events [16]. Data acquired from sensors is then used directly as low level 

contextual information or to reason and construct higher level contextual constructs 

through inference. 

 

Ontology based context models typically specify a set of general context entities 

and relations [16], [18,19] and common to many of these is an explicit place or loca-

tion class. The COMANTO context ontology [15] includes a Place class for represent-

ing an abstract or physical spatial region and also includes spatial relationships among 

places, such as adjacent to, included in, or a hierarchical place containment structure 

(e.g. cities containing buildings and streets). Temporal context has received a similar 

level of attention.  A number of temporal models rely on events to represent condi-

tions of interest or changes of state. Barreneachea et al [8] describe a distributed 

event-based system (DEBS) that employs loosely coupled components communi-

cating via event-based asynchronous interactions. Andrienko et al [20] describe spa-

tio-temporal context for movement data that links movement events through spatial 

and temporal relationships to other locations and events. Janowicz et al [21] empha-

size the importance of space and time as contextual foundations in the Linked Data 

world.  

 

Bowers et al [3] provide an ontology based model for scientific observation data 

including context specification. They define context as the meaningful surroundings 



of an observation, including other observations, their measured values, and their rela-

tionship to the observed entity. The OBOE ontology [2], illustrated in Figure 1, repre-

sents observations as assertions about entities, including one or more measurements, 

which assign a value to a characteristic of an entity. The OBOE ontology specifies 

context as a unary relation, hasContext, between observations. A context thus consists 

of named relationships between one observation and others indicating that an observa-

tion has been made within the scope of associated observations [3]. An example from 

[3] is a measure of diameter at breast height (DBH) as an observation on a tree. This 

observation is related by a “within” relation to a temporal observation measured in 

years and by another “within” relation to an observation of a plot as a location meas-

ured on a nominal scale.  

 

Fig. 1. The OBOE ontology for ecological observation data [3]  

This is a flexible model in that any number and type of observation can be associated 

to create context. A limitation, however, is that no explicit classes of context are dis-

tinguished as in other context models [13], [15]. Specifically spatial and temporal 

context observations are not distinguished from any other context observations and 

are thus not searchable or retrievable as context components.  

 

A second limitation of the OBOE context model is that it does not support higher 

level constructs. Context remains a Tier 2 level observable reality in Frank’s [22] 

terms, rather than supporting higher level abstractions over observations. For example 

Bowers et al [3] give an air temperature observation as a context observation for a tree 

observation. A single air temperature observation or a daily average provides some 

level of context, but a sequence of observations abstracted as an event and indicating 

a period of rising or falling air temperature including the rate of rise or fall provides a 

higher level and richer context than a single observation.  



3 Place and Event Based Context Model for Observation Data 

The proposed context model builds on the OBOE and other context models with 

three objectives:  1) to make spatial and spatio-temporal context distinct (from other 

types of context), 2) to allow higher level constructs for creating context, and 3) al-

lowing context to be indefinite, open ended, and context dependent. The approach 

reuses classes and relationships from OBOE including the Observation, Entity, Meas-

urement, and Characteristic classes. In addition it utilizes the hasSpatialSetting and 

hasTemporalSetting relationships from the GEM model [23], the SpatialObject class 

from GeoSPARQL [24] and the TemporalEntity class from Owl-Time [25].  Semantic 

web technologies are used to implement the context model. An ontology based gazet-

teer implemented as an RDF triplestore supports spatial context construction and pro-

vides some level of reasoning over context information. The context model can be 

queried through SPARQL and GeoSPARQL.  

3.1 The Spatial Context Model 

The approach for making spatial context explicit and open-ended is managed by as-

signing an observation a spatial setting and then allowing the spatial setting to be 

expanded as appropriate. The assigned spatial setting is considered a local spatial 

context. An OBOE Observation is related to a GeoSPARQL SpatialObject with the 

hasSpatialSetting property from GEM as shown in Figure 2. The GeoSPARQL Spa-

tialObject class has two subclasses: Feature and Geometry where Feature can be a 

distinct physical object in the landscape and may refer to a named geographic location 

or place [24].  

 

Fig. 2. The OBOE observation class is connected through an OWL object property 

GEM:hasSpatialSetting to a GeoSPARQL SpatialObject class which can be a feature 

(place) or geometry. 

The GeoSPARQL geometry class includes subclasses point, polyline, and polygon 

among others. The spatial setting for an observation can thus be a named place (fea-

ture), a geometry, or both. The GeoSPARQL ontology [24] defines an OWL object 

property, hasGeometry, between Feature and Geometry classes allowing a feature to 

be associated with zero or many geometries. A benefit of this approach is that a spa-

tial setting need not imply any specific geometry allowing for some vagueness in the 

spatial setting. For example one might want to indicate that the setting of an observa-

tion is the mouth of a stream without having to specify such a setting with explicit 

geometry.  

 



The assigned spatial setting can be extended along two possible pathways allowing 

for open ended context construction. If the assigned spatial setting is a geometry type 

it can be expanded through spatial relationships [26, 27] among geometry types as 

supported by GeoSPARQL. For example if the spatial setting of an observation is a 

polygon representing a field plot, a possible expanded spatial context could be the set 

of adjacent field plots. If the spatial setting is a place or feature type with no geometry 

and we wish to expand spatial context we need a mechanism to establish relationships 

between features.  Here we focus on this second pathway as an important way to cap-

ture relationships among features or places not easily captured by spatial topological, 

distance, or directional relationships. This second expansion pathway relies on a se-

mantically enhanced gazetteer that incorporates feature to feature and feature part-

whole relationships. The enhanced gazetteer is developed from two ontologies: a 

geographic feature ontology and a gazetteer ontology.  The approach has similarities 

to the SPIRIT project [28] which defined a three part ontology based model for geo-

spatial search and in follow on work, [29] demonstrated expansion of  place name 

search using spatial relationships such as near, north, south, east, or west of a place 

name.   
 

The geographic feature ontology models prototypical features (places) and rela-

tionships among them. We illustrate the approach for a subdomain of hydrologic fea-

tures modeled as subclasses of the GeoSPARQL Feature class. A class hierarchy of 

prototypical surface hydrology feature types is shown in Figure 3. FreshwaterBay and 

MarineBay are examples of prototypical feature parts. Namespace prefixes used in 

this example and elsewhere in the paper include geo: GeoSPARQL, hfo: Hydro-

logicFeatureOntology, hgaz: HydrologicFeatureGazetteer. 

 

Specification of feature to feature relationships is the important element that allows 

a feature or placed based spatial setting to be expanded to a broader spatial context. 

Specification of these as OWL properties makes use of OWL semantics to support 

context expansion through inference. The HFO includes OWL object properties; 

hasHydrologicRelation, hydrologicPartOf and its inverse, hasHydrologicPart, to ex-

press general associations between hydrologic feature classes. These general hydro-

logic relations are specialized by sub-properties (shown in Table 1) to express seman-

tic feature-feature and feature-part relationships between the prototypical hydrologic 

feature classes. These feature-feature and feature-part relationships are instantiated in 

a hydrological feature gazetteer. These relationships are initially derived by GIS anal-

ysis but once instantiated in the gazetteer triple store they are easily accessed for con-

text expansion without expensive spatial operations. 



 
 

Fig. 3. Class hierarchy of prototypical hydrological feature types. 

 

Table 1. Example OWL object properties, sub-properties and characteristics as specified in the 

HFO.  

 

Property SubProperty Characteristics 

hasHydrologicRelation flowsInto Antisymmetric, Intransitive 

 flowsFrom 

flowThrough 

hasInflow 

hasOutflow 

isSourceOf 

hasSource 

hasMouth 

isMouthOf 

isTributaryOf Antisymmetric, Transitive 

 hasTributary 

hasHydrologicPart hasFreshwater-

Bay 

Antisymmetric, Transitive 

 hasMarineBay 

hydrologicPartOf     FreshwaterBayOf 

 MarineBayOf 

 

Expansion of a place or feature based spatial setting is executed through queries to 

the gazetteer triplestore. Table 2 illustrates a SPARQL query template for expanding a 

feature based spatial setting. Through the SPARQL query, Maquoit Bay, an instance 

of a MarineBay is expanded to the set of feature instances hydrologically connected to 

Maquoit Bay. This set of feature instances and their relationships to the spatial setting 



feature form one possible spatial context. OWL semantics on these relationships such 

as the transitive property of hasTributary allows the relationships to be expanded to 

their transitive closure. Thus by inference a connected network of features  can be 

obtained including tributaries of  streams connected to Maquoit Bay, bodies of water 

they may flow through, and drainage units drained by the streams. The standard set of 

topological, directional, and proximity relationships would not as easily or directly 

obtain such a set of connected features and parts.  

Table 2. SPARQL query template for constructing spatial context through feature to feature 

relations. The query starts from a named feature (e.g. Maquoit Bay) specified as the 

SpatialSetting and expands to semantically related features. 

 

3.2 Creating Temporal Context 

Context in the OBOE model relies on relationships to individual observations and as a 

consequence misses important aspects of the temporal dimension. Parallel to the spa-

tial context approach, we start with the specification of a temporal setting and allow 

this temporal setting to be expanded dynamically as needed by identifying events that 

are temporally related to the temporal setting.  

 

A temporal setting is specified by connecting the OBOE observation class through 

the object property, hasTemporalSetting to the OWL-Time TemporalEntity class as 

illustrated in Figure 4. The OWL TemporalEntity has two subclasses, Instant and 

Interval, which allows a temporal setting to be either an instant or an interval.  



 

Fig. 4. An OBOE: observation class is connected through the GEM:hasTemporalSetting object 

property to the OWL-Time TemporalEntity class.  

By specifying a temporal setting as a TemporalEntity, we make use of the semantics 

of OWL-Time. OWL-Time specifies a ProperInterval as a subclass of Interval. A 

ProperInterval is related to two Instants that specify a start time and end time through 

hasBeginning and hasEnd object properties. Temporal relationships as specified by 

Allen [30] can be asserted between ProperIntervals.  

 

A number of context models rely on sensor data for context and context awareness 

and many rely on events abstracted from sensor data streams [14], [16]. For temporal 

context expansion we rely on an event database including events obtained as abstrac-

tions from sensor time series data. Such events are defined as subsequences of a sen-

sor time series for which a particular property holds over a temporal interval [31]. For 

example, events extracted from a sensor time series of stream flow based on some 

domain defined threshold might include BaseFlow, HighFlow, and LowFlow events. 

Events from other sources, such as generated by human observation, or action (e.g. 

house construction), can also contribute to temporal context. Events are specified as a 

subclass of TemporalEntity which means they can be intervals or instants. Events are 

also assumed to have spatial settings, here specified by the GEM: hasSpatialSetting 

property to the GeoSPARQL SpatialObject class. Thus similar to an observation, an 

event can be situated in a place (feature) or by geometry (point, line, polygon). Events 

are also assumed to have some domain supported type classification.  

 

Given an assigned temporal setting for an observation expressed as either an inter-

val or instant, Temporal Context is the set of events in some temporal relation (e.g. 

before, concurrent) with an observation’s  temporal setting and additionally having 

relevant spatial relations to the observation’s SpatialSetting or expanded spatial con-

text. Standard SPARQL does not support temporal queries, but using extensions to 

SPARQL we can retrieve events of a specified type that have occurred within some 

temporal range of the observation’s temporal setting. We can also retrieve events that 

have occurred in a specific temporal interval relationship (before, meet, overlap, dur-

ing, start, finish, equal) to a temporal setting interval or in the case of an instant, be-

fore or equal [30].  

 

Events that qualify for Temporal Context by satisfying temporal relationships must 

also be evaluated for relations with the observation’s SpatialSetting and Spatial Con-

text sets. Events are first checked to see if they share a spatial setting with an observa-

tion and then checked for spatial relationships with an observation’s extended Spatial 

Context.  



4 Context Model Example 

To illustrate the spatial dimension of our context modeling approach we use water 

quality observations collected for shellfish harvest monitoring. Shellfish (clams, mus-

sels, and oysters) are filter feeders, so the quality of the waters in which they grow is a 

key factor in determining whether they are safe to eat. Marine water samples are col-

lected and tested throughout the year to evaluate levels of pathogenic bacteria and the 

presence of high levels trigger shellfish bed closures. This monitoring setting has a 

number of context dependencies important for understanding the spatial and temporal 

dynamics of coastal pollution events and bacterial outbreaks. Complex system inter-

actions exist between natural process events such as precipitation, temperature, and 

salinity changes and anthropogenic events such as wastewater treatment protocols, 

sewer or storrmwater discharges, or changes in land use-land cover. Temporal de-

pendencies can arise as a result of stream chemistry reacting differently to rainfall 

events depending on season and weather [32,33,34]. Spatial dependencies include 

catchment setting, size of embayment, and number and size of freshwater inputs.  

 

The shellfish harvest area water quality observation data [35] include a station lo-

cation, date, sampling protocol (e.g. R = random), a fecal coliform count per 100ml 

seawater sample (Score), a laboratory test method (MFCOL= membrane filtration), 

some related observations on tide level and wind direction, and an adversity factor 

that includes for example: P= rain or mixed precipitation anytime within past 2 days 

(i.e. thunderstorms, rainfall more than a drizzle); T= thawing snow and ice melt; S= 

sewage treatment plant malfunction or bypass events; W= Waterfowl (10 or more), 

domestic or wild animals (i.e., at the station or in close enough proximity to have a 

possible impact). Table 3 shows an example water quality observation record [35]. 

Some level of contextual information is provided by the adversity factor but not in 

any formal way.  

Table 3. Example of a shellfish growing area water quality observation record.[35]. 

 

For demonstration purposes, a subset of these observations was semantically anno-

tated using parts of the OBOE ontology with the addition of a spatial setting specifi-

cation. A Hydrologic Feature Gazetteer instantiated with features from the US Na-

tional Hydrography Database (NHD) provides the basis for spatial context expansion. 

Features in the gazetteer are uniquely identified by their Geographic Names Infor-

mation System (GNIS) number and associated with an official GNIS name.  

 

A water quality monitoring station was specified as a subclass of a GeoSPARQL 

feature and each observation was assigned a unique identifier based on its station 

number (e.g. WJ001.50.345678). Because observations are taken at stations and sta-

tions are fixed, the spatial setting of an observation has a two part specification; an 



observation is assigned a station as a spatial setting, and a station is then assigned one 

or more spatial settings that may be specified as places, geometry, or both as shown 

below. 

oboe: observationWJ003.021345 gem: hasSpatialSetting geo: 

StationWJ003.02 

geo:StationWJ003.02 gem: hasSpatialSetting 

hgaz:gnis570752 #specifies a feature 

geo:StationWJ003.02 geo:hasGeometry geo: PointWJ003.02 

Spatial Context for an observation can be obtained by expansion of the spatialSetting 

to semantically related features (places) or to spatially related geometries. To create 

an expanded SpatialContext for a water quality observation taken at StationWJ003.02 

with the feature based SpatialSetting, Staples Cove, we use the SPARQL query tem-

plate shown in Table 2 on the Hydrologic Feature Gazetteer. The query retrieves a set 

of features hydrologically related to Staples Cove. Staples Cove is the mouth of three 

streams, Frost Gully Brook, Concord Gully Brook and Kelsey Brook. These streams 

and their relationship to the spatial setting form one possible spatial context for this 

observation. Spatial Context could be further expanded through inference on defined 

relationships. This prototype supports an example set of feature types and relation-

ships and as such provides one example of how a semantically enhanced gazetteer 

could be used for flexible spatial context construction. 

5 Summary 

To be most effectively used, scientific observations can benefit from spatial and tem-

poral context models.  Building on the OBOE semantics for observations [3], this 

paper describes a model for open ended spatial and temporal context building for 

observations. Defining what constitutes spatial or temporal context is a context de-

pendent problem and placing exact bound on these can be limiting. We address the 

spatial aspect of the problem by allowing features or places and relationships among 

features and places to define spatial context from narrow settings to expanded settings 

as a function of feature-feature relationships. An example water quality data set col-

lected as part of a shellfish monitoring program was used for proof of concept. Future 

research needs to develop the temporal context model more fully and test the ap-

proach on larger data sets and different contexts.  SPARQL queries for interacting 

with the context model are cumbersome for an average user and could benefit from 

further research on graphical interfaces and query rewriting to facilitate construction 

and interaction with context sets. Further investigation of effective visualization of 

observations within spatial and temporal context sets would also benefit researchers in 

exploring their observation data. 
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