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Problems with Fields as Functions 
 
The field is a geospatial model for representing measurements or predictions of  
continuous spatiotemporal phenomena. As such, it aims to give a value for any position  
in a region or across a span of time. The mathematical definition of a function is a  
mapping of one set, the domain, onto another set, the co-domain (or range), and so one  
obvious way to model a field mathematically is to view it as a function. The definition of  
a function is fairly restrictive: for every point in the domain, one and only one value can  
result. Additionally, since the phenomena described by the field is spatially continuous,  
this places restrictions on what types of sets the domain can be. The domain of a field  
corresponds to spatial or temporal (or both) reality, and it is "continous" (which might  
have differing meanings in different situations). It's worth examining what consequences  
can arise from this conception of a field as a function over a continuous domain and  
exploring what possibilities this model will allow.  
 
First, a word on terminology. The term field as used here refers to a geographic or  
spatiotemporal field (or possibly a spatial field or a temporal field). It is a close cognate  
to the fields used by physicists and engineers. A similar term is that of coverage. Data  
structures which implement this model directly (at least to some degree) are the raster or  
the TIN (Worboys & Duckham) in that they aim to give a result for any point within  
them. It has no relation to the term field as it is used in computing and databases where it  
refers to an attribute or variable associated with a record. It also doesn't refer to the  
mathematical concept of field which is a set with two group forming operators (e.g.  
integer, real, or complex numbers).  
 
The field model can be formulated in a number of ways, but one very common (and  
useful) way is to view it as a function from position to attribute (Coulcelis, Kemp,  
Worboys & Duckham). As a function, the field has a domain, the set of all possible  
values for which the field is defined, and a range, the set of all possible values which  
could result from the field. This translates very naturally to the underlying physical  
phenomenon being described, and this model is useful for analysis of the phenomenon  
since the mathematical tools of physics, meteorology, and spatial analysis are based on  
mathematical functions. But there may be situations where what results from a field is not  
single valued, and it may be that over a consistent domain, points may exist where the  
field has no value associated. This may have consequences for whether the field is  
considered continuous.  
 
The term continuous has a number of definitions. Mathematically, a function is  
continuous if as the range of a independent variable shrinks so does the corresponding  
range of the dependent variable (Adams & Franzosa). In topology, this is generalized as a  
continuous function being a one where open sets have open preimages (the set of all   



points which map into the open set) (Adams & Franzosa). However, both of these  
definitions are applied to functions, and we are talking about the continuous domain of a  
field, that is a continuous set.  
 
The mathematical concept of continuum is often used to understand what is described as  
continuous as applied to a region or set (Bell). The continuum is the prototype of the real  
number line (Adams & Franzosa). It is has no gaps, and put in terminology of sets, it is  
connected, convex, and dense. The continuum is connected which means that a path can  
be found between any two points in the set, and in the single dimension of the continuum,  
this is equivalent both to its convexity and density (diagram). But in two dimensions, sets  
can exist which are connected but not convex (diagram) although convexity does imply  
connectedness. The continuum also excludes discrete sets, which are used whenever a  
digital implementation of a field is used.  
 
But this definition of field as a function does not capture the full range of geographic  
information. Situations exits where the behavior of the field as a function fails to fully  
model reality can be constructed where multiple values at a position are needed, and the  
model of the field as being defined over a continuous domain is overly restrictive for  
modeling things like discontiguous regions. The next section of this talk deals with such  
examples.  
 
One prototypical example of a field is that of elevation, often implemented as a digital  
elevation model (DEM). But at some point within the field there might be a cliff with an  
overhang. If elevation is defined as the interface between the ground and the atmosphere,  
the field ceases to be a simple function. (Diagram.) Yes, the field can be defined to be the  
elevation of the highest ground point at a position, but this loses information about the  
terrain. For visualization or hydrological analysis, this information can be important, as  
is having a data model which retains it. In these situations, the elevation field is best  
modeled mathematically as a relation.  
 
Another example of multivalued fields...  
 
If a field of land surface temperature is defined over Hawaii, because no value exists for  
points which are not over land, the domain over which the field is defined is disconnected  
because of the structure of islands embedded in an ocean. We could propose a different  
definition of the field: either water surface temperature could be used as a stand in for  
land surface temperature to make the domain continuous, or each island could be  
represented as one of over a hundred a separate isolated fields. A field could be  
considered a mathematical relation instead of a function, and then there is no problem  
with having points where no value results. These possible solutions each have their own  
problems. Water surface temperature has a different meaning than land surface  
temperature, and different measurement methods may be required. And aside from the  
inconvenience of having to deal with more field objects, the inability to combine disjoint  
fields can hamper any analysis which needs to work across the fields.  
 
  



When a field is defined over a continuous domain, this is sometimes equated with there  
being "no gaps" in the domain. This idea of no gaps deserves some examination because  
it can lead to something more restrictive than is intended. Certainly, it means that  
between any two points in the domain, there is also another point in the domain, and  
continuing in this way (between those two points, and between those two points...), we  
come to the idea of continuum. However, because we are working in two (or more)  
dimensions, the idea of "between" may not be as well-defined as we might like. If  
between is intended to convey everything along some chosen path, then the idea of no  
gaps becomes equivalent to the idea of connected (i.e. there is some path between two  
points). But if between is intended to convey everything along the straight-line path  
between points, this is the definition of convex. While the rectangular regions of rasters  
and the convex hulls which define regions where interpolation can be performed meet  
this more restrictive definition, arbitrary regions do not, and the realization that not all  
points "between" two points in the domain will also be in the domain may be important.  
 
When we define data structures which implement fields in a computer we are setting up a  
relation between position and value, but the domain of the set cannot be a connected set.  
If the field is defined over integers, what is being used is a discrete set of isolated points,  
and no path exists between any two points. The situation is no better when floating point  
number representations are used. There are alternative topologies which can be imposed  
over discrete sets which do deal with connectedness, but these digital line and digital  
plane topologies are not currently used for in computing (Adams & Franzosa).  
 
In order to do mathematical analysis directly on fields, the idea of field operators has  
been proposed. The idea is to have a set of operators which are closed over fields; that is  
operators which take one or more fields and use them to return a new field. Much of the  
motivation for this has been to mirror what can be done with map algebra on raster data,  
but the hope is that a full complement of arithmetic, statistical, and logical operators can  
be developed for the broader and more abstract field model and can be used directly for  
analysis of fields. We will see that while the idea of the field as a function over a  
continuous domain isn't incompatible with the idea of field operators, without particular  
care, inconsistencies can result.  
 
One such operator proposed is the predicate operator. This operator can be formulated in  
a number of ways, but the aim is to produce a new field based on a proposition evaluated  
as either true or false. One proposed definition is to have the resulting field be defined  
with the original attributes if and only if the proposition is true; where the proposition is  
false, the field is undefined. Points in the original domain where the proposition is false  
are no longer part of the resulting domain, and since nothing about the predicates require  
that the remaining region be connected, the domain of the resulting field need not be  
connected. (diagram).  
 
Another possible way to work with the results of field predicates is as a field of Boolean  
values which are defined at every point in the original domain: true where the underlying  
proposition is true, and false where it is false. Since every point in the original domain is  
defined, if the original domain is connected, the resulting domain is also connected. It  
 
  



may appear we have solved the problem of disconnected domains with predicate  
operators.  
 
We can take this idea a step further and define a binary Boolean-and field operator which  
is defined as true when the Boolean and of the corresponding underlying points is true  
and false when false (diagram). But if the two fields don't coincide completely, the  
possibility exists for a disconnected resulting domain. For example, consider one region  
of an operand field which is false and disjoint from the other operand field. Because false  
combined any other value is false for an and operator, we know the resulting field will be  
defined as false over this region even though the second operand field isn't defined there.  
Because this region surrounded by true values and disjoint from the other operand field,  
there is a region which overlaps the operand field for which we do not know the value;  
the field is undefined in this region. And finally, in the region where the two operand  
fields do overlap, the values are known and therefore the field is defined. In this situation,  
the resulting field has a disconnected domain. One possible solution is to only define  
such an operator (and similar operators) only over fields with completely coincident  
domains. While this does solve the problem for this case, it restricts situations where  
analysis can be done to only where regions overlap completely.  
 
So what can be done? In many situations, treating a field as a function over a connected  
region is necessary. When further analysis is primarily mathematically based, and that  
mathematics is based on simple continuous functions, having a field which is defined  
over a consistent and connected region. In other situations, a field, while being remaining  
a spatial relation, cannot be defined as a function since points in its domain might have  
no value and other points have multiple values. Whether a field is a function or not has  
impacts on how that field can be used for further analysis.  
 
It may be that closed field operators will need to be defined on fields of completely  
coincident regions and only on connected (or possibly even convex) domains. The  
exceptions and complexities which arise from defining the operators otherwise may  
become too difficult to manage.  
 
It may be that the most general definition of a field is most appropriately not a function,  
but a relation. This has the advantage of describing a wider variety of spatial situations,  
but it has added complexity and allows for fewer assumptions to be made.  
 
More likely is that geographical analysis will require both: simplistic functional fields for  
mathematical analysis and richer (but more complicated) relational fields for analysis  
which goes beyond the mathematical. Which fits better into an intuitive model of a field  
remains to be seen.  
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