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Abstract  
 
In geographic information science, a set of eight measures have been introduced to offer 
metric refinements of topological relations between two regions. Examples include the 
percentage of the common interior of two overlapping regions and the relative increase to 
convert to disjoint regions into touching regions. Some of these measures apply only to 
particular relations yielding a functional dependency from the metric measures to the 
topological relations.  The purpose of this paper is to establish the inherent linkages 
between the eight qualitative region-region relations and the eight quantitative metric 
values by comparing their impacts upon the qualitative 9-intersection matrix.  We prove 
that from the value ranges of the metric measures one can infer uniquely the topological 
relation.  We provide a comprehensive account of all 432 mappings and give visual 
examples of the 17 viable options, each producing a unique relation.  Comparing these 
results, minimal conditions are set forth for region-region relation determination.  The 
impact of this new insight on future geographic information systems includes the ability 
to check topology without ever drawing the objects and the ability to convert numerical 
values into polygonal entities. 
 
1. Introduction 
 
This paper is concerned with spatial objects that have a continuous boundary and have no 
holes.  All of these objects are located in a simple two-dimensional plane.  Something 
like: such spatial objects are called spatial relations. We consider in all instances two 
objects, one named A and one named B, that have an unknown topological relation 
between them that we wish to establish.  Every object we consider has three distinct 
features:  (1) an interior (denoted as Ao), (2) a boundary (denoted as ∂A), and (3) an 
exterior (denoted as A’). Interior is defined as …  **and the other two as well. 
 
Start reversely: The 9-intersection considers the interplay of two regions’ interiors, 
boundaries, and exteriors by analyzing the intersections of these six parts. This leads to a 
3x3 matrix, the 9-intersection matrix, in which typically empty and non-empty 
intersections are registered. As such the 9-intersection matrix offers a qualitative 
description for the regions’ binary relation as no further details are captured for non-
empty intersections. The empty and non-empty intersections distinguish uniquely eight 
topological relations between two spatial regions (disjoint … equal). This set of relations 
is jointly exhaustive and pairwise disjoint (i.e., ***).   
 
 



        
Figure 1:  9-Intersection Matrix   Figure 2:  Object Form Representation 
 
 
Create a single table that contains the eight matrices together with their example 
drawings.  
 

    

    
A disjoint B A meet B A overlap B A equal B 

    

    
A covers B A contains B A coveredBy B A inside B 

Figure 3: The eight topological relations between two regions and their corresponding 9-
intersection matrices. 
 
Given the representations, we can now distinguish the measurable quantities. 

1. Inner Area Splitting (portion of A inside of B) (0<=x<=1) 
2. Outer Area Splitting (portion of A outside of B) (0<=x<=1) 
3. Exterior Splitting (area of exterior shut off by the union of A and B) (0<=x) 
4. Inner Boundary Traversal (portion of A’s boundary inside of B) (0<=x<=1) 



5. Outer Boundary Traversal (portion of A’s boundary outside of B) (0<=x<=1) 
6. Boundary Sharing (portion of A’s boundary shared with B) (0<=x<=1) 
7. Inner Closeness (contraction required for A and B to touch boundaries) (1<=x 

or N/A) 
8. Outer Closeness (swelling required for A and B to touch boundaries) (1<=x or 

N/A) 
 
Figures 11-18 highlight the measures of interest in red. Same with these figures: create a 
single table.  Figures look rudimentary. You can work off the attached figures. I guess 
you’ll need some practice with a slightly more advanced drawing program.  
 

   
Figure 11:  Inner Area Splitting  Figure 12:  Outer Area Splitting 

   
Figure 13:  Exterior Splitting   Figure 14:  Inner Boundary Traversal 

     
Figure 15:  Outer Boundary Traversal Figure 16:  Boundary Sharing 



   
Figure 17:  Inner Closeness   Figure 18:  Outer Closeness 
 
Here starts probably  
 
 
FINDINGS.  Starting with the definitions of the quantitative metrics, we can isolate cells 
of the 9-intersection matrix that would be affected by the measure.  Using this 
information, we can then proceed to isolate topological information from the metrics. 
 
Inner Area Splitting: 
 
Area(Ao ∩ Bo)/Area(A) 
 
Term “Cell” has not been defined.  
Need to write the equations with the Word’s equation editor (make sure that same font 
size is used as for text) 
 
By the definition of inner area splitting, it is clear that the value of inner area splitting 
will be crucial in defining Cell A in the 9-intersection matrix, just as Cell A will be a 
driving force in the value of the inner area splitting metric.  It is clear that if Cell A is 
empty, that means that the inner area splitting metric must equal 0, since Area(Ao ∩ Bo) = 
0 when Cell A is empty.  Of our topological combinations, only disjoint and meet satisfy 
that Cell A is empty, thus disjoint and meet must have inner area splitting = 0.  No other 
topological configuration can have inner area splitting = 0 since the rest have finite 
intersections in Cell A. 
 
If Cell A is non-empty, we must check other components.  Cell A’s status as non-empty 
eliminates disjoint and meets. 
 
If inner area splitting = 1, all of A’s interior is in B’s interior since Area(Ao ∩ Bo) = 
Area(A), therefore Cell B and Cell C must be empty (Cells A – C denote the presence of 
A’s interior in relation to B’s interior, boundary, and exterior respectively).  This 
condition is fulfilled by equals, covered by, and inside. 
 
If inner area splitting = (0,1), some of A’s interior is in B’s exterior, B’s boundary, and 
B’s interior.  It is impossible for the interior of A to be in any two of these without the 
third due to completeness of the real line.  Therefore Cell A is non-empty, Cell B is non-



empty, and Cell C is non-empty.  This condition is satisfied by overlaps, covers, and 
contains. 
Recapping all of this, the value of inner area splitting uniquely defines the configuration 
of the first row in the 9-intersection matrix. 
 
Outer Area Splitting 
 
Area(Ao ∩ B’)/Area(A) 
 
Outer Area Splitting is the direct inverse of Inner Area Splitting.  All relations remain the 
same, all that is required is to subtract each value from 1, as outer area splitting provides 
the complementary set to the inner area splitting because Bo and B’ are complements. 
 
Exterior Splitting 
 
Area(enclosed region)/Area(A) 
 
Exterior Splitting is the most unique of the measures that we have.  Exterior Splitting has 
the potential to be created when we have at least two separate intersections between ∂A 
and ∂B.  The matrix itself has no way of distinguishing between the cardinality of an 
intersection, but it does contain information vital to exterior splitting in the form of the 
intersections that must happen minimally. 
 
For exterior splitting to occur, we must have an intersection between ∂A and ∂B.  This 
means that Cell E must be non-empty.  Furthermore, both A’ and B’ must intersect, 
meaning that Cell I is non-empty.  Both ∂A and ∂B must intersect the opposite exterior as 
well, meaning that both Cell F and Cell H are non-empty.  The interiors must also 
intersect the opposite exteriors since part of each object must be outside the other to 
create exterior splitting.  This means that Cell C and Cell G are non-empty. 
 
Cell A, Cell B, and Cell D remain as variable so far.  Searching the matrices for the 
above conditions, we find that when exterior splitting exists, we only have two possible 
outcomes: overlaps and meets. 
 
If exterior splitting does not occur, then the value for it is obviously 0.  For this to 
happen, Cell I must be non-empty.  In the given situation of a two-dimensional flat plane, 
this is inconsequential because Cell I must always be non-empty. 
 
Inner Traversal Splitting/Outer Traversal Splitting/Boundary Sharing 
 
These three metrics refer to the distribution of the boundary of A.  Adding the three 
together must result in 1.  This is important to remember later.  Given that this is a matter 
of the distribution of A’s boundary, we are concerned with the values contained in Row 2 
of the 9-intersection matrix.  Some are valid; some are not.  Table 1 shows the specific 
entries that could happen in Row 2 of this matrix and addresses why or why not they are 
possible. 



 
Table 1:  Boundary Row Possibilities 
∂A ∩ Bo ∂A ∩ ∂B ∂A ∩ B’ Ramification Possibility 
empty empty empty A has no 

boundary 
impossible 

non-empty empty empty A’s boundary 
in B’s interior 
completely 

possible 

empty non-empty empty A’s boundary 
matches B’s 
boundary 

possible 

empty empty non-empty A’s boundary 
in B’s exterior 
completely 

possible 

non-empty non-empty empty A’s boundary 
in B’s closure 

possible 

non-empty empty non-empty A’s boundary is 
both inside and 
outside but not 
coincident with 
B’s boundary 

impossible 

empty non-empty non-empty A’s boundary 
not inside B’s 
interior 

possible 

non-empty non-empty non-empty A’s boundary 
in all parts of B 

possible 

 
As we have shown, we have six possible middle row configurations.  The six 
configurations have specific topological relations paired with them from the 9-
intersection matrix.  These results are shown in Table 2: 
 
Table 2:  Boundary Possibilities with Topological Relations 

Option # Possible Topology 
1 inside 
2 equals 
3 disjoint 

contains 
4 coveredBy 
5 meets 

covers 
6 overlap 

 
By this table we have four relations already functionally dependent.  Inside, equals, 
covered by, and overlap have unique configurations on the center row. 
 



Let’s look at these four closer.  For option 1, we know that A’s entire boundary is in B.  
So inner traversal splitting = 1, outer traversal splitting = 0, and boundary sharing = 0.  
Let’s consider option 4.  We know that A’s boundary is completely within the closure of 
B.  It is possible for ∂A and ∂B to meet in multiple places with no length, namely points.  
Therefore inner traversal splitting = 1, outer traversal splitting = 0, and boundary sharing 
= 0.  We have two configurations that are now not unique.  Table 3 shows the range of 
values acceptable for the measures in each option (note that options 3 and 5 will not have 
unique representations for their parts): 
 
Table 3:  Range of Values for Boundary Splits 
Option Inner Outer Sharing 
1 1 0 0 
2 0 0 1 
3 0 1 0 
4 0<x<=1 0 0<=x<1 
5 0 0<x<=1 0<=x<1 
6 0<x<1 0<x<1 0<=x<1 
 
As one can see, it is easy to have values that would look the same for different 
combinations.  The only unique definition here is equals (option 2). 
 
Inner Closeness 
 
Width of buffer/Area(A) 
 
To observe inner closeness, otherwise being referred to as contraction closeness, A must 
be at least as large as B and B must not extend past A’s boundary.  This means by shear 
verbal standards, that there are three options:  equals, covers, and contains. 
 
There is proof of this through the 9-intersection matrix.  We start with the notion that B 
cannot extend past A’s boundary.  By virtue of completeness of the real line, we know 
that Ao and Bo must intersect, yet Bo and ∂A do not intersect.  This establishes fully 
Column 1 of the 9-intersection matrix.  To register a value of inner closeness, Cell A 
must be non-empty, while Cell D and Cell G are both empty.  The three satisfactory 
models are thus equals, covers, and contains. 
 
Can we refine this further?  The answer is yes. 
 
For inner closeness to reach a value of 0, we know through virtue of the completeness of 
the real line that ∂A and ∂B must intersect, meaning that A need not shrink to create 
boundary contact.  This condition fills in Cell E in the 9-intersection matrix.  We have 
thus made the following refinement:  if inner closeness>0, then we have contains.  If 
inner closeness = 0, we have either equals or covers. 
 
Outer Closeness 
 



(Area(A) + swelling distance)/Area(A) 
 
Outer closeness is a hybrid model. Outer closeness is more aptly described as the amount 
by which A must swell to contact B’s boundary. Intuitively, this seems like A must be 
outside of B, namely the two objects either meet or are disjoint. It is completely possible 
however to conceive of A being smaller than B and needing to swell to contact B’s 
boundary, namely A is inside, equals, or is covered by B. 
 
We must treat the cases separately unfortunately because the defining characteristics of 
the relations in question are so far opposite. We get the notions of “outside” and “inside” 
through the value of inner area splitting to make the distinction. 
 
For inner area splitting = 0 (a.k.a. A outside of B), we need to maintain all exterior 
intersections. Since we know that inner area splitting = 0, we throw away overlap and we 
are left with meet and disjoint. Cells C, F, G, H, and I have non-empty intersections. 
 
We can go further than this. Since meet has an intersection in Cell D, that means that A 
and B touch. This means that outer closeness = 1 because the swelling distance = 0. If A 
and B were disjoint, then there would be some swelling distance, and outer closeness > 1. 
 
For the case where inner area splitting ≠ 0, the closure of A must be completely contained 
by the closure of B, thus we have empty exterior intersections with the exception of Cell 
I. We also know that the interiors (Cell A) must intersect because of the closure 
containment. These distinctions result in equals, covered by, and inside. 
 
We can refine this further. If outer closeness > 1, then Cell E is empty. If Cell E is empty 
out of these options, we know that A must be inside B. If outer closeness = 1, then we are 
left with covered by and equals. 
 
The Sets 
 
Given the constructs above, we have the following options to work with for values: 
 
3 possible sets for inner area splitting/outer area splitting 
2 possible sets for external splitting 
6 possible sets for inner boundary traversal/outer boundary traversal/boundary sharing 
3 possible sets for inner closeness 
3 possible sets for outer closeness 
 
Given these values, there are 324 possible combinations of the metrics. This assumes that 
they can all happen with each other. This assumption is of course faulty. As we went 
through the different metrics, we established which of the relations would satisfy the 
conditions set. Since the topological relations are mutually exclusive and jointly 
exhaustive, we can easily reduce this number in a systematic way by starting with the 
inner area/outer area options. 
 



Assume that we have observed an inner area splitting of 0. This means we have one of 
two cases: disjoint or meet. Of the two possible sets for external splitting, both contain 
either disjoint or meet. Of the six possible sets for the boundaries, two of them contain 
disjoint or meet. Of the three possible sets for inner closeness, only one contains disjoint 
or meet. Of the three possible sets for outer closeness, two contain disjoint or meet. That 
being said, we have eight possible viable relations from the first condition (2 x 2 x 2). 
 
Assume that we have now observed inner area splitting of 1. This means we have one of 
three cases: equals, inside, and covered by. Of the two possible sets for external splitting, 
only one contains these relations. Of the six possible sets for the boundaries, three contain 
these values. Of the three possible sets for inner closeness, two of them contain these 
values. Of the three possible sets for outer closeness, two of them contain these values. 
That being said, we have twelve candidate relations from the second condition (3 x 2 x 
2). 
 
Assume now that we have observed inner area splitting of (0,1). This means we have one 
of three cases: overlap, contains, and covers. Of the two possible sets for external 
splitting, both contain these relations. Of the six possible sets for the boundaries, three 
contain these values. Of the three possible sets for inner closeness, all three contain these 
values. Of the three possible values for outer closeness, only one option contains the 
relations. That being said, we have eighteen candidate relations from the third condition 
(2 x 3 x 3). This brings us to a grand total of 38 potentially viable relationships. This 
represents a reduction of roughly 88%, a very good first step. Not all of these potentially 
viable relationships are viable however. We need to drill into the combinations to find 
contradictions between them. Table 4 shows the 38 combinations that are viable based on 
topological combination and addresses their outcomes/contradictions. 
 
Table 4: The Bullshit Table 
IAS ES IBT OBT BS IC OC Result Contradiction 
0 0 0 (0,1] [0,1) NA 1 Meet #1 
0 >0 0 (0,1] [0,1) NA 1 Meet #2 
0 0 0 (0,1] [0,1) NA >1 Disjoint #3 
0 >0 0 (0,1] [0,1) NA >1 -none- ES implies 

meet whereas 
OC implies 
disjoint 

0 0 0 1 0 NA 1 Meet #4 
0 >0 0 1 0 NA 1 Meet #5 
0 0 0 1 0 NA >1 Disjoint #6 
0 >0 0 1 0 NA >1 -none- ES implies 

meet whereas 
OC implies 
disjoint 

1 0 1 0 0 NA 1 Covered 
by 

#7 

1 0 1 0 0 NA >1 Inside #8 



1 0 0 0 1 NA 1 -none- IC implies 
not equal, BS 
implies 
equals 

1 0 0 0 1 NA >1 -none- BS implies 
equals, OC 
implies 
separation of 
boundary 

1 0 (0,1] 0 [0,1) NA 1 Covered 
by 

#9 

1 0 (0,1] 0 [0,1) NA >1 Inside #10 
1 0 1 0 0 0 1 -none- Special case 

of covered by 
without IC=0 

1 0 1 0 0 0 >1 -none- IC and OC 
contradict 

1 0 0 0 1 0 1 Equals #11 
1 0 0 0 1 0 >1 -none- Equal 

boundary but 
separation in 
OC 

1 0 (0,1] 0 [0,1) 0 1 -none- Covered by 
but IC=0 
implies 
A>=B 

1 0 (0,1] 0 [0,1) 0 >1 -none- OC>1 
implies 
inside, most 
all else lead 
to covered by 

(0,1) 0 0 1 0 NA NA -none- IC and OC 
together 
restrict us to 
overlap, but 
OBT dictates 
contains 

(0,1) 0 0 (0,1] [0,1) NA NA -none- IC and OC 
dictate 
overlap, but 
IBT does not 
show overlap 

(0,1) 0 (0,1) (0,1) [0,1) NA NA Overlap #12 
(0,1) 0 0 1 0 0 NA Covers #13 
(0,1) 0 0 (0,1] [0,1) 0 NA Covers #14 
(0,1) 0 (0,1) (0,1) [0,1) 0 NA -none- Covers with 



a value for 
OBT 

(0,1) 0 0 1 0 >0 NA Contains #15 
(0,1) 0 0 (0,1] [0,1) >0 NA Contains #16 
(0,1) 0 (0,1) (0,1) [0,1) >0 NA -none- Contains 

with an 
inside 
boundary 

(0,1) >0 0 1 0 NA NA -none- ES implies 
overlap or 
meet, but 
IBT=0 

(0,1) >0 0 (0,1] [0,1) NA NA -none- ES implies 
overlap or 
meet, but 
IBT=0 

(0,1) >0 (0,1) (0,1) [0,1) NA NA Overlap #17 
(0,1) >0 0 1 0 0 NA -none- ES implies 

overlap or 
meet, but 
IBT=0 

(0,1) >0 0 (0,1] [0,1) 0 NA -none- ES implies 
overlap or 
meet, but 
IBT=0 

(0,1) >0 (0,1) (0,1) [0,1) 0 NA -none- All imply 
overlap 
except for 
IC=0 

(0,1) >0 0 1 0 >0 NA -none- ES implies 
overlap or 
meet, but 
IBT=0 

(0,1) >0 0 (0,1] [0,1) >0 NA -none- ES implies 
overlap or 
meet, but 
IBT=0 

(0,1) >0 (0,1) (0,1) [0,1) >0 NA -none- All imply 
overlap 
except IC>0 

 
Table 4 shows us that we have seventeen possible combinations that are acceptable 
topologically, a total reduction of 95%. Table 5 shows the distribution of the topological 
relations over these seventeen. 
 
Table 5: Topological Distribution 



Topological Relation Number of Instances 
disjoint 2 

meet 4 
overlap 2 
equal 1 
covers 2 

contains 2 
coveredBy 2 

inside 2 
 
We have now constructed the total sets that define topology, but are there subsets that 
uniquely define topological relations? The answer to this is yes. For this section, we will 
assume that the objects we are getting values from actually can be realized, therefore we 
cannot get wrong values. 
 
Minimal Subsets of Definition 
 
Disjoint 
 
Two definitions resulted in disjoint. Both lines have the following values in common: 
IAS = 0, ES = 0, IBT = 0, IC = NA, and OC > 1. This subset obviously would trivially 
define disjoint. The issue at hand is to distinguish disjoint from meet, the two exterior 
relations. The only concrete differentiation between disjoint and meet is OC > 1. For two 
objects to meet, their boundaries must coincide at at least one point. This means that meet 
requires OC = 1. This states that the minimal definition for disjoint is IAS = 0 and OC > 
1. 
 
Meet 
 
The minimal definition for meet is IAS = 0 and OC = 1. There are four ways to obtain 
meet, so it makes sense to see if there is something else hiding in the definitions. 
 
Recall that all rows resulting in disjoint contained ES = 0. Two rows resulting in meet 
contained ES > 0. That being said, IAS = 0 and ES > 0 define meet uniquely. 
 
A further difference between meet and disjoint is the ability of two meeting objects to 
share boundaries. We have a measure for that in BS. IAS = 0 and BS > 0 implies meet 
directly. 
 
Recall from the discussion of exterior splitting that two topological relations could create 
exterior splitting: meet and overlap. Both rows resulting in overlap contain IBT = (0,1), 
OBT = (0,1), BS = [0,1), IC = NA and OC = NA. That being said, we have some more 
unique definitions. Meet can be distinguished from overlap on the basis of ES > 0 and 
IBT = 0, and can also be distinguished from overlap on the basis of ES > 0 and OC = 1. 
 
Overlap 



 
As one might expect, the first definition of overlap is that which distinguishes it from 
meet. Overlap is distinguished by ES > 0 and IBT > 0. Overlap is also distinguished by 
ES > 0 and OC = NA. Overlap can also be distinguished by IAS = (0,1) and ES > 0. 
 
There were six rows in Table 4 that contained IC = NA and OC = NA. The only result 
that came of these rows was overlap. These are obviously tied together as this means that 
the object is both inside and outside the object at the same time. This statement leads us 
to another distinction: overlap is the only topological relation that allows for its boundary 
to be both inside and outside of the related object. That being said, IBT > 0 and OBT > 0 
must define overlap. 
 
Overlap can also be differentiated from covers and contains by IC = NA and IAS = (0,1). 
 
Equals 
 
Equals is the trivial case of topology. It requires the object to have the same boundary, 
the same interior, and the same exterior. These statements lead to specifics that only 
equals can provide together. In our case, it means we have unique definitions. It turns 
out, equals is the only unique definition, meaning there is only one way to get it, namely 
IAS = 1, ES = 0, IBT = 0, OBT = 0, BS = 1, IC = 0, OC = 1. 
 
The first minimal condition for equals is found in BS. BS = 1 means that the entire 
boundary is shared between the two objects. This means the two objects are equal simply 
because we have simply connected regions. This is the smallest minimal condition that 
we will find for any topological relation. Trivially, this also means that IBT = 0 and OBT 
= 0 also defines equals because the three together must sum to 1. 
 
The next minimal condition that is intuitively obvious is that equals is the only relation 
that would exhibit both IC and OC values. Both of these metrics are defined in only 
equals. Therefore IC = 0 and OC = 1 uniquely defines equals. 
 
In our method of constructing realizable relations, equals was tied to both inside and 
covered by, all of which have IAS = 1. Is equals distinguishable from these? It turns out 
that it is. Equals can be distinguished from both inside and covered by in that it has IC = 
0, therefore IAS = 1 and IC = 0 defines equals. 
 
Inside 
 
Inside implies that there is no boundary intersection and that the closure of A is contained 
within B. This means that IAS = 1 and that BS = 0. Unfortunately, this does not 
distinguish it from covered by as a single point intersection has no length. We must look 
deeper than this definition. 
 
Given the information about the closure, we can infer that inside must exhibit OC > 1. 
The object must grow to intersect boundaries. Neither covered by nor equals can have 



OC > 1 because they have boundary contact already. The only relation that can have OC 
> 1 other than inside is disjoint. The difference between inside and disjoint is that inside 
has IAS = 1 and IBT = 1, whereas disjoint has IAS = 0 and IBT = 0. That said, inside has 
two minimal definitions to distinguish it from disjoint, covered by, and equals: IAS = 1 
and OC > 1 and IBT = 1 and OC > 1. 
 
Covered by 
 
Covered by is tied to meet and to both equals and inside. It is tied to both equals and meet 
through OC = 1 and is tied to both equals and inside by IAS = 1. 
 
Covered by appears as though it needs three metrics to define it uniquely. It needs IAS = 
1, OC = 1, and IBT ≠ 0. This distinguishes it from all three of its competitors. Can we do 
better? The answer is yes. 
 
The difference between covered by, inside, and equals is the distribution of the boundary. 
Covered by shares some proper subset of the boundary. Inside shares no part of the 
boundary. Equals shares the whole boundary. That being said, if 0 < BS < 1, combined 
with IAS = 1, we must have covered by. What this shows is that we get similar 
information from IC, OC, and BS. The difference between inside and covered by (as well 
as the difference between disjoint and meet and the difference between covers and 
contains) shows the necessity of having IC and OC alongside BS. Without IC and OC, 
we could easily confuse these relational pairs because the boundaries could share only 
points, which means 0 distance is logged in the metric. 
 
Contains 
 
Contains is tied to both overlap and covers through IAS = (0,1). We must find some easy 
way to distinguish it from its partners. 
 
The difference between contains and both overlap and covers is the issue of boundary 
intersection. Contains cannot intersect the boundary, therefore we know that BS = 0. 
Unfortunately, both covers and overlap have cases where that also happens, so this 
information is not enough. 
 
From this information we can derive that there is a separation between the boundaries, 
namely that IC > 0. Neither covers nor overlap can meet this criterion. Therefore the 
minimal definition of contains is IAS = (0,1) and IC > 0.  
 
Covers 
 
Covers is different from contains in that it has some essence of boundary sharing. Covers 
is different from overlap in that A must cover all of B instead of just part of it. 
 
Covers is thus differentiated from contains by saying that IAS = (0,1) and IC = 0. Covers 
is thus differentiated from overlap in the same way as IC = NA for overlap. 



 
Covers cannot be differentiated from overlap in regard to boundary sharing. Both covers 
and overlap can have intersection of boundary that has finite length. 
 
CONCLUSIONS 
All told, we have twenty-one total combinations of minimal conditions for topological 
relations. These results are presented in Table 6. These twenty-one combinations show 
that the purpose of the paper is possible and that topology is functionally dependent upon 
metric information. In fact any topological relation can be defined within at most three 
metrics (the case when covers, meet, or covered by share only points with the other 
object). Provided there is finite boundary sharing length, only two are necessary for 
unique definition. 
 
Table 6: List of Minimal Conditions 
Condition 1 Condition 2 Topology Defined 

IAS = 0 OC > 1 disjoint 
IAS = 0 OC = 1 meet 
IAS = 0 ES > 0 meet 
IAS = 0 BS > 0 meet 
ES > 0 IBT = 0 meet 
ES > 0 OC = 1 meet 
ES > 0 IBT > 0 overlap 
ES > 0 OC = NA overlap 

IAS = (0,1) ES > 0 overlap 
IC = NA OC = NA overlap 
IBT > 0 OBT > 0 overlap 

IAS = (0,1) IC = NA overlap 
BS = 1  equal 
IBT = 0 OBT = 0 equal 
IC = 0 OC = 1 equal 

IAS = 1 IC = 0 equal 
IAS = 1 OC > 1 inside 
IBT = 1 OC > 1 inside 
IAS = 1 0<BS<1 coveredBy 

IAS = (0,1) IC > 0 contains 
IAS = (0,1) IC = 0 covers 

 
Topology can map onto these metric combinations so long as the third condition is not 
needed. This is not a functional dependency from the perspective of topology in that there 
are multiple ways to get equivalent topological combinations. 


