
i	

	

›	

FEASIBILITY STUDY OF CONTINUOUS REAL-TIME SPATIAL
INTERPOLATION OF PHENOMENA USING BUILT-IN FUNCTIONLITY OF

A COMMERCIAL DATA STREAM MANAGEMENT SYSTEM

By Balaji Venkatesan

Project Advisor: Dr. Silvia Nittel

An Abstract of the Project Presented

in Partial Fulfillment of the Requirements for the

Degree of Master of Science

(in Spatial Information Science and Engineering)

May, 2013

Smartphones and tablets have made users crave for instant and latest updates. People extensively

rely and use these modern devices to know their surroundings. They have a dual role to play:

they get information and also can act as sensors, which can share data. This is made possible due

to the integration of low-cost, microsensors like accelerometers, proximity sensors, GPS,

ambient light sensors, compasses, etc. However, in the near future it is a possibility that

environmental sensors like those measuring humidity, temperature, certain particulate matters,

radiation levels, etc. might get deployed as well and then these sensors can act as mobile stations

which can share and update phenomenon of their surroundings. However, such applicability

means that spatial interpolation of the mass-measured phenomena must be done at near real time

so that users can also be clients ‘seeing’ the entirety of the phenomenon in their vicinity.

Managing such mass data updates from mobile sensors requires novel data management

technology that can keep up with processing this data onslaught, i.e. data stream management

ii	

	

systems. There are a few out-of-the-box data stream solution offered by industries today. Some

prominent ones are Esper, IBM InfoSphere Streams, Microsoft StreamInsight, Oracle CEP,

StreamBase, etc. However, not much work has been done to use a DSMS and test out with

respect to real time spatial interpolation of continuous phenomena. The project explores whether

this type of real-time spatial interpolation of a continuous phenomena based on large number of

discrete sensor data streams can be accomplished by using the off-the-shelf functionalities

available in commercial DSMS available today. The project also introduces the concept of

spatial field data model, which provides a robust and an extensible framework to define fields

and their behavior. Finally, a DSMS application was built and tested with simulated data from

the Fukushima nuclear plant accident in Japan 2011. Experiments were conducted to test the

performance and analyze the bottlenecks of using a commercial DSMS.

iii	

	

I would like to extend my sincere gratitude to all my friends, family and the Department of

Spatial Information Science and Engineering for their kind support and guidance. Especially, I

would like to thank my advisor Dr. Silvia Nittel for her guidance and support throughout the past

two years. Without her valuable inputs this project would not have obtained its fruitful result. I

shall also thank the members of the Geosensor Network Lab: Qinghan Liang and Mark A

Plummer for their feedback during project meetings. A special thanks to Professor Sytze de

Bruin and J.C. Whittier, for assisting with their expertise while developing the dataset for

running experiments. I like to thank Professors Kate Beard and Harlan Onsurd for serving as my

committee members and other professors who have impacted me in the past years.

I am grateful to my roommates Hengshan Li and Matthew Dube and other graduate students in

the School for their support and encouragement. Last but not the least, I thank the Graduate

School at the University of Maine and the Office of International Programs for their kind

support.

	

ACKNOWLEDGEMENT	

iv	

	

	

ACKNOWLEDGEMENT	
 ..	
 3	

TABLE	
 OF	
 CONTENTS	
 ...	
 4	

LIST	
 OF	
 FIGURES	
 ...	
 6	

Chapter 1 :	
 INTRODUCTION	
 ..	
 1-­‐1	

1.1	
 Motivation	
 ..	
 1-­‐1	

1.2	
 Project	
 Objectives	
 ...	
 1-­‐3	

1.3	
 Organization	
 Of	
 Project	
 ...	
 1-­‐3	

Chapter 2 :	
 BACKGROUND	
 AND	
 RELATED	
 WORK	
 ..	
 4	

2.1	
 Data	
 Stream	
 Management	
 Systems	
 (DSMS)	
 ..	
 4	

2.2	
 Commercial	
 DSMS	
 Systems	
 ..	
 6	

2.3	
 Oracle	
 CEP	
 ..	
 7	

2.3.1	
 Architecture	
 ...	
 7	

2.3.2	
 Stream	
 Queries	
 ..	
 9	

2.4	
 Bottlenecks	
 ..	
 10	

2.5	
 Oracle	
 Point	
 Cloud	
 (PC)	
 ..	
 11	

2.6	
 Oracle	
 Georaster	
 (GR)	
 ..	
 12	

Chapter 3 :	
 REAL-­‐TIME	
 MONITORING	
 OF	
 CONTINUOUS	
 PHENOMENA	
 USING	
 ORACLE	
 CEP/SPATIAL	
 	
 14	

3.1	
 Overview	
 ..	
 14	

3.2	
 Application	
 Layer	
 ...	
 15	

3.2.1	
 Architecture	
 ...	
 15	

3.3	
 Components	
 ...	
 16	

3.4	
 Spatial	
 Field	
 Generator	
 (SFG)	
 ...	
 17	

3.5	
 Storage	
 Architecture	
 ..	
 18	

3.6	
 Visualization	
 ...	
 19	

Chapter 4 :	
 Optimization	
 ..	
 22	

4.1	
 Overview	
 ..	
 22	

4.2	
 Multi-­‐threaded	
 IDW	
 ...	
 23	

4.3	
 Block	
 Read/Write	
 via	
 BLOBs	
 ..	
 24	

	
 	

	
 TABLE	
 OF	
 CONTENTS	

v	

	

Chapter 5 :	
 Performance	
 Evaluation	
 ..	
 27	

5.1	
 Overview	
 ..	
 27	

5.2	
 Data	
 sets	
 ..	
 27	

5.3	
 Test	
 Setup	
 ..	
 29	

5.3.1	
 Client	
 Setup	
 ..	
 29	

5.3.2	
 Server	
 Setup	
 ...	
 30	

5.4	
 Experiment	
 Configuration	
 ..	
 31	

5.4.1	
 IDW	
 Interpolation	
 Performance	
 Result	
 ..	
 32	

5.4.2	
 Visualization/Georaster	
 Creation	
 Performance	
 Result	
 ..	
 34	

5.4.3	
 Discussion of Results	
 ...	
 36	

Chapter 6 :	
 Conclusions	
 And	
 Future	
 Work	
 ...	
 37	

BIBLIOGRAPHY	
 ...	
 39	

	

vi	

	

	

	

Figure	
 	
 2.1:	
 Data	
 stream	
 ...	
 4	

Figure	
 	
 2.2:	
 Oracle	
 CEP	
 Architecture	
 ..	
 8	

Figure	
 	
 2.3:	
 A	
 generic	
 EPN	
 ..	
 9	

Figure	
 	
 2.4:	
 Temperature	
 Point	
 Cloud	
 over	
 Orono	
 ..	
 11	

Figure	
 	
 2.5:	
 Point	
 Cloud	
 Data	
 Type	
 Storage	
 ...	
 12	

Figure	
 	
 2.6:	
 Oracle	
 Georaster	
 Data	
 model	
 ...	
 13	

Figure	
 	
 3.1:	
 Overview	
 ...	
 14	

Figure	
 	
 3.2:	
 Event	
 Processing	
 Network	
 ..	
 16	

Figure	
 	
 3.3:	
 Spatial	
 Field	
 Generator	
 ...	
 17	

Figure	
 	
 3.4:	
 Sensor	
 Data	
 Storage	
 Architecture	
 ...	
 18	

Figure	
 	
 4.1:	
 Work	
 Order/Tile	
 ..	
 23	

Figure	
 	
 4.2:	
 Producer	
 Consumer	
 IDW	
 interpolation	
 module	
 ...	
 24	

Figure	
 	
 4.3:	
 BLOB	
 read/write	
 ...	
 25	

Figure	
 	
 5.1:	
 Data	
 Set	
 Generation	
 in	
 NetLogo	
 ...	
 28	

Figure	
 	
 5.2:	
 Load	
 Generator	
 with	
 128	
 sensors	
 ...	
 29	

Figure	
 	
 5.3:	
 Oracle	
 CEP	
 JRockit	
 Server	
 ..	
 30	

Figure	
 	
 5.4:	
 IDW	
 Interpolation	
 Performance	
 Test	
 Result	
 ...	
 33	

Figure	
 	
 5.5:	
 Georaster	
 Creation	
 Performance	
 Test	
 Results	
 ..	
 35	

LIST	
 OF	
 FIGURES	

1	

	

	

	

1.1 Motivation
	

The unprecedented developments in the micro-electromechanical systems (MEMS) [6] world are

producing robust, inexpensive sensors ranging in size from a few microns to millimeters. Our

mobile phones for instance carry a host of sensors like accelerometer, proximity, GPS, ambient

light, compass etc. As Smartphones and tablets are becoming more and more sophisticated, it is

only a matter of time when they will come shipped with other environmental sensors like those

measuring temperature, noise, air quality, ozone, radiation level etc [7]. The reason why these

handheld devices are favorites as sensors for measuring physical phenomena is because they

have access to wireless networks and can accurately measure their location using GPS.

Altogether, in the near future, common users can become mobile sensing stations and can

perform participatory sharing [7] of their surroundings, which could help people to have a more

precise understanding of their locality.

Imagine a person suffering from asthma and he/she would like to take an evening stroll in the

park. All the other visitors who are currently in the park can continuously participate in

streaming air quality data, which could enable the asthma affected person to make a better

informed decision about when to take a stroll in a park or which route is safer. Since mobile

sensor data stream provides point based physical quantity measurement of a specific geographic

region, they provide discrete representation of the underlying phenomena. So, spatial

interpolation of individual sensor data stream is necessary to generate continuous representation

Chapter 1 : INTRODUCTION	

2	

	

of a phenomenon. However, traditional Database Management Systems (DBMS) are not

efficient enough to handle continuous data streams due to their architectural limitations and disk

based access [9].

Over the past decade, a new generation of stream data processing systems called Data Stream

Management Systems (DSMS) has been developed. The goal of such systems is to handle

unbounded data and to return meaningful results on-the-fly. Additionally, DSMS queries are

similar to SQL queries, however they specify a new interval based evaluation operator

commonly referred to as a query window [10]. Also, these queries are often called continuous

query as they can run indefinitely, and return query results at the end of each query window.

Stock tickers, network security monitoring, intrusion detection, assembly lines etc are some of

the areas for which DSMS are being used. However, most recently researchers have shifted focus

towards using DSMS to monitor and detect continuous phenomena [11]. For example, the stream

query "spatially interpolate all pollen grain sensor data streams in sensor data streams where

sensor=pollen grain and observation region="orono" with window=5min, slide=30s" will

observe the distribution of pollen grain phenomena over Orono for the past 5 min every after 30

second interval. For the above query, the DSMS should aggregate and interpolate sensor data for

the past 5 min both spatially and temporally for every 30 seconds. This requires near real time

spatio-temporal interpolation of the raw discrete sensor data streams and the whole execution

time should be less than 30 seconds. Network latency issues are not considered here for

simplicity. This demands, a near real time spatial interpolation of sensed data.

	

3	

	

1.2 Project Objectives
	

The main objective of this work is to evaluate and explore whether this type of real-time spatial

interpolation of a continuous phenomena based on large number of discrete sensor data streams

can be accomplished by using mostly off-the-shelf functionalities available in commercial DSMS.

The project investigates the following questions:

• Q1: Is it feasible to build a real time spatial interpolation application using commercially

available DSMS?

• Q2: How scalable is such a system (i.e. how many sensor data streams can be

interpolated into a single continuous phenomenon in near real-time)?

• Q3: Which are the bottlenecks of such a system?

For the project, Oracle Complex Event Processing (CEP) and Oracle Spatial were used to

implement the investigated DSMS application. Several improvements were made to the real-time

interpolation application architecture to improve performance. Performance experiments were

conducted using a simulated dataset generated from Netlogo, which used nuclear radiation

incident data from Fukushima Daiichi as the underlying phenomena.

1.3 Organization of this Project
	

The remainder of this project is organized as follows: Chapter 2 reviews background and related

work. Chapter 3 presents our implementation approach. Chapter 4 highlights the improvements

made to the existing DSMS application architecture to enhance performance. Chapter 5 discusses

experimental design and test results. Finally, Chapter 6 concludes project achievements and

discusses future direction of work.

4	

	

	

2.1 Data Stream Management Systems (DSMS)
	

A Data Stream Management System [13] is a software system designed to manage continuous

data streams as found in financial application, and real-time traffic, emergency or intrusion

monitoring applications. Data streams are considered continuous because the amount of data

arriving at a particular time is unbounded or cannot be pre-determined. Common sources of these

data are readings generated from sensors that measure physical properties of their surroundings

like temperature, pressure, noise, air quality, radiation etc. Other sources include process that

need constant monitoring like the share price data from stock markets, data packets from

network for detecting threats and so on. An important property of these data sources is that they

are push-based. They sense and keep transmitting sensed value to their destination at a specific

rate. Additionally, these sensors can timestamp the data before sending, or in some cases, DSMS

timestamps tuples upon arrival. A generic sensor data packet can be visualized as a tuple or a

record which can contain attributes like <sensor id, sensor type, timestamp, location, value

measured>.

Figure	
 	
 2.1:	
 Data	
 stream	

Chapter 2 : BACKGROUND	
 AND	
 RELATED	
 WORK	

5	

	

In traditional DBMS, queries are evaluated by pulling data from disk. However, in DSMS this is

reversed: here queries get evaluated based on data pushed by data sources [14]. Moreover,

traditional queries are executed one time, whereas queries running in DSMS are continuously re-

evaluated and often run indefinitely on the arriving data. This reversal of roles for data and query

meant that new strategies have to developed to handle new challenges:

• Continuous Query Model: Traditional DBMS queries operate on a finite data set (i.e. a

relation) and assume a set-based semantics on data, i.e. they don't have to consider the

order of data. However, continuous queries operate indefinitely on an unbounded data set

and take order of data into consideration using additional specification for query

evaluation intervals also called query windows [10].

• Low Latency: Data from streams generally are critical for answering real time queries, so

their significance is short-lived. For instance, pollen grain distribution over a park will

keep on changing with time, due to wind influence. So, latest data from a sensor stream is

more important than past data here. Past data could be used for prediction and performing

other statistical inferences. Nevertheless, stream data processing must be done at near real

time with very low latency to leverage real time data.

• Variable data rate: The data arrival rate for stream based application could be from few

hundreds to millions updates per second. Additionally, the data could be busty in nature

due to fluctuations in the sensor update rates or due to transmission delays. Irrespective

of the bottlenecks, DSMS must be robust and high performance oriented.

6	

	

2.2 Commercial DSMS Systems
	

Today, research in DSMS has resulted in several commercial DSMS, among them are open

source Esper [1], IBM InfoSphere Streams [2], Microsoft StreamInsight [3], StreamBase [5] and

Oracle CEP [4] as major ones.

Esper [1] stands for event stream processing and correlation. It is a real time data stream

processing solution from EsperTech Inc. Released in July 2006, it is available in three variations

- Esper Enterprise Edition, Esper and EsperHA. It is mainly written in Java and can be embedded

into any java process. A open source version is also available.

In IBM InfoSphere Streams, applications are built by developing graphical data flow graphs. A

data flow graph serves as an overview of the entire system, which consists of set of nodes which

are distributed in no-sharing clusters and interconnected by streams [2]. There are several

operators defined to perform data stream analytics. Each node consists of Processing

Elements(PE) which serves as a container for operators.

Microsoft StreamInsight [3] is a platform to develop and deploy complex event based application

using.Net framework. The product is included with SQL Server 2008 R2. The queries are written

in LINQ (Language Integrated Query). LINQ enables specifying query constructs as strong

typed classes thereby eliminating the need to learn query syntax for different databases.

However, StreamInsight uses an adapter model for the input and output of data [17]. This means

that one can build generic components, which could be reused in different applications.

StreamBase LiveView [5] is a push-based real time analytics solution that consumes data from

streaming real time data sources. It uses Dynamic Stream Compiler technology, which compiles

7	

	

multiple queries into one efficient execution query. Queries are written in StreamSQL, which is

an extension of the standard SQL model. Applications can be developed in Java, C++ and

Python and offers a range of adapters, which could be used to connect to files, databases,

visualization and statistical tools.

Oracle Complex Event Processing (CEP) [4] is an event driven architecture for handling stream

data. Users can create application by designing an Event Processing Network (EPN) whose

nodes represents event sources, sinks, processors and stream channels. Processors are

components capable of processing events by defining queries in Continuous Query Language

(CQL). CQL is an extension of standard SQL with additional constructs to support stream

processing.

Therefore, most commercial applications offer almost similar benefits of lower latency, high

scalability, higher throughput, and better performance. The choice of selecting one application

over another depends upon business model, license, cost effectiveness and ease of

implementation. However, Oracle CEP was chosen to implement and run experiments for this

project simply due to easy of development and familiarity of the programming language used as

well as the spatial functionality available with the Oracle product family

2.3 Oracle CEP
	

2.3.1 Architecture
	

The heart of the Oracle Complex Event Processing architecture is the CEP server. The CEP

server provides a run time environment to deploy DSMS application. It also provides adapters to

interface with other external application via HTTP, Java Messaging Service, and ODBC

8	

	

protocols. Oracle CEP provides rich libraries, which define components that could be used to

build DSMS application using a development IDE like Eclipse.

Figure	
 	
 2.2:	
 Oracle	
 CEP	
 Architecture	

Applications are built by modeling data flow streams in a graphical interface called Event

Processing Network (EPN) as shown in Figure 2.3. Some important stream processing

components available to build an EPN are:

• Adapters - Converts incoming raw data stream packets into a normalized tuple/event that

can be queried. They directly interface to inbound/outbound stream, sources and sinks.

They are data transformation component that connects to an external application or

sensors.

• Channels- Act like streams through which tuple/event data travels.

• Processors- Continuous queries are managed and run inside a processor component.

These are sites for continuous query execution and management.

• Beans- Beans are basically classes with different roles like client, event etc. A client bean

class can listen to events/tuples generated from query execution. An event bean class can

9	

	

be used to normalize raw sensor data to an event type object. Adapters use event bean for

normalization of raw sensor data.

Figure	
 	
 2.3:	
 A	
 generic	
 EPN	

	

2.3.2 Stream Queries

Stream Queries are defined using Continuous Query Language (CQL) that run inside a PE, as

shown in the Figure 2.3. CQL is a stream query language that is built by extending the standard

Structured Query Language (SQL) library. Therefore, both syntax and semantics of defining a

query remains intact. However, new operators are defined to support stream processing like

STREAM, RELATION, NOW, RANGE, PARTITION, JOIN, SLIDE, WINDOW,

UNBOUNDED, ISTREAM, DSTREAM, RSTREAM etc [19].

A STREAM is a sequence of time stamped tuples. It has no bounds. A RELATION is a bag of

tuples at a particular instance of time. RELATION is the same concept as a traditional table and

hence supports execution of all traditional query operators. NOW represents current time.

10	

	

WINDOW represents a query interval which could be time or value based. RANGE is used to

define time based window length. SLIDE is used to define continuous window query interval.

For example, a slide of 5 seconds defined for a query window will execute the query every after

every 5 seconds.

For example a query, ISTREAM(select max(temperature) from temperature sensor stream where

window(range 5min,slide 1min)) will produce an output stream with maximum temperature

value for the past 5 minutes after every 1 minute interval.

2.4 Bottlenecks
	

Oracle CEP, like other commercial DSMS described before, lacks an in-built solution to handle

spatial data. Most commercial systems provide adapters to external DBMS that provides a rich

spatial data model [3]. So, DSMS uses database drivers to establish connection to store, manage

and query spatial data. Oracle CEP uses JDBC drivers to use Oracle Spatial for spatial data

management.

Stream queries monitoring environmental data are rich in spatial data. An end user will normally

be interested in a phenomenon surrounding his/her location. So, stream query language must

provide constructs to define spatial queries. Consider a query from our motivation scenario:

"spatially interpolate all pollen grain sensor data streams in sensor data streams where

sensor=pollen grain and observation region="orono" with window=5min, slide=30s". The

following query has to filter stream data based on its extent information (orono) and also

interpolate all the valid tuples to produce a continuous representation of phenomena as output.

Therefore, DSMS can use traditional DBMS to leverage spatial operations such as indexing,

interpolation and querying of spatial data. DSMS stores data in memory, whereas DBMS stores

11	

	

data on disk. This is a big limitation because memory-based significantly access is faster than

disk-based. To improve read performance, DBMS offers options like caching, temporary table

and in-memory database. However, most options currently do not support spatial data, and pre-

caching of spatial tables although improves read performance, but requires a disk access upon

update.

2.5 Oracle Point Cloud (PC)
	

Oracle Point Cloud (SDO_PC) data type is generally used to store, manage and query multi-

dimensional point data inside Oracle Spatial. It can store up to 4x1018 points in a single point

cloud object. Imagine the Figure 2.4 shows the temperature phenomenon over Orono. Here

individual pixels can be considered as three-dimensional points with latitude, longitude, and

temperature attributes. These points collectively are stored inside a point cloud object, which has

the extent of Orono.

Figure	
 	
 2.4:	
 Temperature	
 Point	
 Cloud	
 over	
 Orono	

	
 	

PC data is stored in two tables [20] - one that contains the logical representation of the point

cloud object and the other contains the individual data blocks of spatially indexed BLOB data,

which stores point data in raw format as shown in Figure 2.5.

12	

	

Figure	
 	
 2.5:	
 Point	
 Cloud	
 Data	
 Type	
 Storage	

	

The raw data of PC objects are spatially indexed. By default Oracle uses R-Tree indexing for

spatial data. Spatial operations like SDO_INTERACT, SDO_NN, SDO_FILTER, CLIP_PC can

be used on PC. SDO_INTERACT tests whether two features intersect each other. SDO_NN

operator returns the nearest neighbor given a distance. SDO_FILTER operator can be used to

find all the points inside a point cloud, which satisfies a given condition. Finally, SDO_CLIP

operator extracts a subset of a point cloud given an intersecting extent.

2.6 Oracle Georaster (GR)
	

Oracle Georaster (GR) [21] is an Oracle component that enables storing, indexing, querying,

analyzing and visualizing gridded or raster data. The GR objects can be geo-referenced and can

be used to find a cell in an image corresponding to a location on earth or vice-versa. Oracle

provides both Java and the SQL API to manage GR data. Also, it provides tools to export and

visualize GR data in various image formats such as GeoTIFF, DEM, JPEG, BMP . GR data is

stored as two tables - one containing a logical representation of GR objects (schema) and the

13	

	

other containing the spatially indexed data as BLOBS partitioned into several blocks as shown in

Figure 2.6.

Figure	
 	
 2.6:	
 Oracle	
 Georaster	
 Data	
 model	

Each GR contains two coordinate systems: the cell coordinate system –it is used to describe cells

in raster matrix, and the model coordinate system also called ground coordinate system- it is used

to describe points on earth. GR have multi-layer or multi-band concept where each layer can be a

raster with a different timestamp. Such a GR is called time series multilayer image. Also, Oracle

provides a rich set of libraries with functions to manipulate, create, query, and export GR

objects.

14	

	

3.1 Overview

Figure 3.1 gives an overview of the implemented real-time phenomenon monitoring DSMS

application implemented in Oracle CEP. There are three layers - the data layer (bottom), the

application layer (middle), and the client layer (top most). The data layer consists of mobile

sensors, which continuously sense and transmit data over a wireless medium.

Figure	
 	
 3.1:	
 Overview	

. The Application layer is the heart of the DSMS, which operates on the raw sensor data stream

and converts them into meaningful results for end users. The application layer was implemented

the following way: a) it uses in-built components from both Oracle CEP and Oracle Spatial, and

Chapter 3 : REAL-­‐TIME	
 MONITORING	
 OF	

CONTINUOUS	
 PHENOMENA	
 USING	
 ORACLE	

CEP/SPATIAL	

15	

	

b) two new components, i.e. the Spatial Field Generator Module and the Interpolation Module,

were implemented. In this project, we abstract continuous phenomena as Spatial Fields, thus, the

Spatial Field Generator maps raw sensor data streams to Spatial Fields. The spatial field object

provides an abstract/logical representation of a physical field. Users or end application can use

libraries or functions defined for spatial field object to visualize, query, and manipulate field

data. Therefore, users only interact with the spatial field object for their submitted queries. In the

project, additionally the Interpolation component was implemented which ‘exports’ a spatial

field as a raster image. The Spatial Field Generator Module is deployed on Oracle CEP, whereas

the Interpolation Module is installed on Oracle Spatial.

3.2 Application Layer

3.2.1 Architecture

An Oracle CEP application is built by constructing a data stream query network called EPN

(Event Processing Networks), which consists of different components like Adapters, Channels,

Processors, Beans and Event Beans as discussed in the previous chapter. Each component

operates in a non-blocking fashion by pulling, processing, and pushing tuples from an inbound

stream into an outbound stream. Streams are basically implemented as a queue, which holds

tuples. All the components simultaneously produce and consume tuples. A continuous query

executes a process element component, which validates tuples from an incoming sensor stream

and outputs the selected tuples into an output channel. The selected tuples can be stored to a

memory or a disk. Leveraging, this feature the Spatial Field Generator (SFG) was built, which

16	

	

consumes raw tuples and produces spatial field (SF) geometry for a submitted user query as

shown in Figure 3.2.

Figure	
 	
 3.2:	
 Event	
 Processing	
 Network	

3.3 Components
	

The EPN topology shown in Figure 3.2, basically consists of three main components namely

SensorAdapter, SpatialFieldProcessor and SpatialFieldGenerator which are interconnected via

SensorInputChannel and SensorOutputChannel. The SensorAdapter acts as an interface to the

raw sensor data that is transmitted from sensor devices. It hooks itself with sensors using the

TCP/IP communication protocol and its main functionality is to collect, convert and forward raw

sensor data as events (Event Bean classes) recognized by a DSMS framework via the

SensorInputChannel. The SensorInputChannel queues the incoming events and is connected to

the SpatialFieldProcessor. The SpatialFieldProcessor is the processing element, where user

queries are registered using CQL statements. It continuously pulls events (tuples) from the

SensorInputChannel and validates against all the registered queries submitted by users. The

result of each continuous query can be streamed as a separate output channel. The

SensorOutputChannel queues the query output from the SpatialFieldProcessor. The

SpatialFieldGenerator fetches events from the SensorOutputChannel and converts a set of events

for a query window into a spatial field object. It maintains an in-built queue of all the spatial

field objects generated for a continuous query, thus enabling external applications to leverage the

interpolated data via spatial field objects.

17	

	

3.4 Spatial Field Generator (SFG)
	

Figure	
 	
 3.3:	
 Spatial	
 Field	
 Generator	
 	

The Spatial Field Generator is an independent, pluggable component, which can be reused to

convert raw sensor data into spatial field object. The spatial field data model consists of a

hierarchy of classes, which store data either in memory or in a database. The Spatial Field can be

seen as a collection of n-dimensional points (Point Cloud) over a geographic region. Each point

in a Point Cloud (PC) contains location and other physical/logical information such as

timestamp, measured value, and sensor id. For instance, a point in a temperature field can consist

of latitude, longitude, timestamp, temperature value, device id, and other metadata information.

These parameters can be used to index points spatially, temporarily or parametrically. Generally

a two dimensional indexing is built using the location coordinates. However, other parameters

from a multi-dimensional point could be used to index in other dimensions as well.

The SFG produces objects of type spatial field. A spatial field object encapsulates point data and

specifies a set of properties and rules to manipulate or interact with data. This opens up a whole

new way of working with data as fields. The fields can also interact with each other as in the real

18	

	

world: for example, an interaction of a wind field with a fire field, or an interaction of pollen

grain over a wind field. However, the interaction among spatial fields is beyond the scope of this

project. The goal of this project is to prototype a basic spatial field data model framework with

built-in commercial DSMS functionality and test the scalability and performance of such code

when performing spatial interpolation in near real time.

3.5 Storage Architecture
	

The SFG was implemented using an Oracle Spatial database to create a point cloud for the query

window based temporary storage of relevant sample points as pulled from the sensor streams or

updates an existing point cloud object, i.e. every spatial field object has its data stored as point

cloud object in a Oracle Spatial database. Ideally, the Query Manager will manage all running

continuous queries and will efficiently manage point cloud data, based on query extents.

Therefore, data from a sensor stream could be stored as multiple point clouds and a spatial field

object for a running query will contain references to a smaller or an entire extent inside a point

cloud as shown in Figure 3.4.

Figure	
 3.4:	
 Sensor	
 Data	
 Storage	
 Architecture	

19	

	

Oracle Point Cloud can support millions of data points and has capabilities to perform filter,

query, index, and extract operations. N-dimensional point geometry can be stored in a point

cloud and these dimensions can be used for spatial indexing as well. For example, latitude,

longitude, and timestamp information from a point can be used to spatially index a point cloud

data in both space and time. Therefore, point cloud provides a very convenient and flexible

approach to temporarily store and manage raw sensor data. As sensor data arrives via sensor data

streams, they are mapped to respective event (tuple) and converted to a 3D point, and inserted

into an existing point cloud, which is indexed by space and timestamp. Lets denote all the data

points belonging to a specific time interval as a layer. Since data in a DSMS arrives indefinitely,

older layers are either archived or deleted from a point cloud. So, at a specific time, only n

number of layers in a point cloud object exist. The value for n and management of layers in a

point cloud object is beyond the scope of this project. However, it must be noted that an

optimum value for n is determined based on currently active queries and may change whenever a

new query is submitted by a user.

3.6 Visualization
	

Each output for a query window is a spatial field object, which can be visualized in various

ways. The simplest form of visualization is a raster image after interpolation using IDW, Kriging

or any other spatial interpolation method. However, IDW is chosen for the project because of its

simplicity and ease of implementation as discussed in Chapter 2. Inverse Distance Weighing

(IDW) is a deterministic spatial interpolation technique that uses weighted average function to

calculate values at unknown points. The basic idea is that things that are closer in space are more

likely to be alike than if they are farther apart. To predict a value at an unmeasured location,

20	

	

IDW uses the measured values surrounding the prediction location. The measured values that are

closer to a prediction location have more influence than those farther away. Therefore, it is called

inverse distance weighting, as the weights assigned to points decreases with distance. The

general formula to find an interpolated value u at a given point x from a sample ui=u(xi) for

i=0,1,2,3,...n is u(x)= !! ! !!
!! !!

!!!

!
!!! where 𝑤! 𝑥 = !

! !,!! !
 . Here , x is the predicted point , xi is

the neighboring sample points and d is the distance between them and n is the total number of

neighboring points while p is a positive real number called the power parameter.

Oracle Spatial does not have built-in functionality to perform spatial interpolation. So, an IDW

interpolation stack was created in PLSQL and installed in Oracle Spatial as a spatial extension.

The IDW operator takes a bounding box, a radius and a point cloud with measured values as

input parameters and produces an array of interpolated values for all the pixels inside a bounding

box. The operator uses all the measured sample points within a radius and calculates interpolated

value for every pixel.

We assume that a user or an application will specify interpolation method details to visualize a

field. Lets imagine from our motivation scenario, that a user wants to visualize pollen grain

distribution over the Umaine campus. An example of such a query could be "Spatially

Interpolate all pollen grain sensor stream in sensor data streams where sensor=Pollen Grain

and observation area='Umaine Campus' with window =5min, slide=1min ,interpolation=idw,

radius=20m, output=raster resolution=512x512". The above continuous query would produce a

geo-referenced raster representing pollen grain distribution over Umaine Campus for the past 5

min for every 1 minute interval. The raw data from mobile sensors around Umaine Campus is

discrete over a region and thus spatial interpolation has to be performed to predict values at

21	

	

unmeasured location. The output raster image of 512x512 resolution is first geo-referenced to a

query region and then its pixel values are determined by the interpolation method defined in a

query. Oracle Spatial provides the Georaster type to create raster objects, which can be geo-

referenced and allows capabilities like filter, query, extract and index operation as discussed in

Chapter 2. Therefore, once a Georaster object is created, it can be used by end applications to

query and extract information according to their needs, at a future time as well.

22	

	

	

4.1 Overview
	

This project is a feasibility study implementing the spatial interpolation of large numbers of

sensor data streams continuously into raster representation using built-in functionality of a

commercial DSMS. In Chapter 3, we showed the overview of this approach. In this chapter, we

discuss bottlenecks of the implementation and several optimizations we implemented.

At the core of the problem is that spatial interpolation algorithms are both memory and CPU

expensive operation [12]. Generally, spatial interpolation time depends upon resolution and

extent of an interpolated region, and the interpolation algorithm used. A 512x512 resolution

image contains a quarter million points. To perform interpolation at each point, an IDW

interpolator fetches neighboring sample points that are located within a defined radius and

calculates a new predicted value. Here, processing time is directly proportional to both number

of points and radius. However, both the parameters mentioned are variable and defined by a user

query.

Different approaches have been developed to reduce processing time by applying strategies like

finding the kNN points and adaptive kNN for skewed, which reduces the number of neighboring

cells needed for interpolating a point [23]. However, this project aims primarily at exploring

spatial interpolation performance using the traditional IDW operator within a DSMS and DBMS

mixed environment and foremost faster read/write access, which are a basic bottleneck in a

mixed data stream/database environment, were explored to improve performance.

Chapter 4 : Optimization	

23	

	

4.2 Multi-threaded IDW
	

To add parallelism in the interpolation algorithm, we extended the IDW interpolation module in

Oracle Spatial to support a multi-threaded execution model, using a Producer-Consumer

framework. Generally, a Producer is a thread that creates work orders, while a Consumer is a

thread that executes work orders from a Producer. In the current context, a work order is a tile of

n x m resolution such that n and m are multiple of an output image width and height respectively,

as shown in Figure 4.1.

Figure	
 	
 4.1:	
 Work	
 Order/Tile	

Basically, the producer thread creates work orders (tiles) and populates a Work Order Queue.

Consumer threads on the other hand, fetch a tile from Work Order Queue and perform IDW

interpolation. Consumer threads populate an Output Queue with interpolated tiles. Generally,

there is one producer thread and multiple consumer threads as shown in Figure 4.2. All threads

run independently and in parallel. The Output Queue is consumed by an instance of the

Georaster Module, which stitches all the tiles in an Output Queue to create a single Georaster

object. Thus, the Producer-Consumer framework is one possibility to increase the overall IDW

interpolation performance by interpolating set of points simultaneously. We investigate in

Section 5 the impact of parallelization.

24	

	

Figure	
 	
 4.2:	
 Producer	
 Consumer	
 IDW	
 interpolation	
 module	

However, one key aspect of a Producer-Consumer framework is to determine when threads

should stop. This is achieved by passing a null tile at the end of a Work Order Queue. A null tile

contains null values for an attribute values. Due to the parallel execution of consumer threads, a

null tile can be read by any of the running consumer threads. So, a consumer thread upon

fetching a null tile stops itself and inserts a null tile back to the Work Order Queue to be read by

the remaining active consumer threads. Eventually, all consumer threads receive null tile and

stops execution.

4.3 Block Read/Write via BLOBs
	

Oracle Georaster stores image as blocks of BLOB type as discussed in Chapter 2. The high-level

Georaster API provides functions, which can update one pixel at a time. Each time this function

is used, it performs an index search of a pixel in all the blocks of an image and updates a BLOB

object i.e. there is a write operation for each method call. Therefore, for a 512x512 raster,

invoking this method for a quarter million points will drastically increase georaster creation time.

25	

	

Alternatively, reading a BLOB object and updating all its content in memory and writing all the

updated values at once will improve performance. In this approach, for each BLOB there is a

single write operation, whereas in the previous approach each pixel update accompanies a write

operation. The Interpolation module works at tile level such that, a tile extent is same as block

extent i.e. there is 1:1 mapping between an interpolated tile and a georaster block object. For

each interpolated tile, a matching georaster block object is read into memory, and the pixel

values from the tile is copied to a block's BLOB. Internal BLOB storage is shown in Figure 4.3.

Figure	
 	
 4.3:	
 BLOB	
 read/write	

For example, in a 32 bit real Georaster object, a cell value occupies 4 bit of space. A Georaster

block object contains extent information, which could be used to map cell location to BLOB

addresses using the following formula : ba (x,y)=((x-txmin)+ (y-tymin) *w)*4 +1 ; where ba is

BLOB address for a cell at (x,y) location, txmin is tile minimum x bound value, tymin is tile

minimum y bound value and w is width of an image.

Figure 4.3 shows an internal storage representation for an 8x8 image. The image is stored in 4

blocks of size 8x2. Each block stores its extent and points as BLOB. Each BLOB will contain

(8x2) 16 point values. Each point value represents a cell index as shown in the figure. Lets

26	

	

calculate, the BLOB address for a cell point at 2,1 in a block (tile) with 0,0,7,1 as extent. Using

the above formula: ba (2,1)=((2-0)+ (1-0) *8)*4 +1=(2+1*8)*4+1=10*4+1=41.

However, the key here is to fetch a BLOB object and update all its values in memory and

perform a single write operation. This approach should be relatively faster than the original

approach since it combines multiple write operations into a single write operation of sequential

cells inside a BLOB. Both the optimization approaches were integrated into the DSMS

application architecture and the performance test of the overall approach is described in Chapter

5.

27	

	

5.1 Overview

This section discusses the experimental set-up and results, with respect to the discussed DSMS

architecture, i.e. to analyze performance of near real-time spatial interpolation using our data

stream interpolation query of sensor data streams implemented with Oracle CEP and Oracle

Spatial. The proposed DSMS architecture was built with a version of Eclipse IDE with support

for Oracle CEP Tools downloaded from [8]. Oracle 11g R2 was used as back end database for

storing and managing spatial data.

5.2 Data sets

As test data set, we use simulated sensor data streams produced from a partially crowd-sensed

data set collected after the Fukushi nuclear plant accident in Japan in 2011; we scaled up this

data set to a larger number of data streams to test the implementation. In detail, the data set was

created in the following way:

On 11 March 2011, around 2:46 p.m. local time, near the Japanese island of Honshu an

earthquake of 9 on the Richter scale took place. The earthquake resulted in a tsunami, which

caused a series of nuclear meltdown and release of radioactive materials into the atmosphere in

and around Fukushima Daiichi. Since the incident, several private and government organization

collected radiation measurements in the affected areas; published data sets are SPEEDI [24] and

Safecast data [25]. We chose the SPEEDI data set since it contains all the radiation

measurements from sensor stations around Japan in an archive file and dates before and after the

Chapter 5 : Performance	
 Evaluation	

28	

	

incident. We used data from the first three weeks after the incident and loaded it into a Netlogo

application.

Figure	
 	
 5.1:	
 Data	
 Set	
 Generation	
 in	
 NetLogo	

Our Netlogo application simulates cars sampling radiation data while driving on roads around

the accident area in Japan; thus, a shape file of the road network of Japan was imported into

Netlogo, and mobile agents were created to simulate cars on roads and sampling the underlying

phenomena for six timestamps (half day intervals). The sampled records generated have

timestamp column called tick numbered from 0 to 5 respectively. The number of agents was

changed to generate data sets corresponding to different number of mobile sensors. For this

particular experiment, data sets corresponding to 16,32,64 samples and 128 sensors were created

as shown in Figure 5.1. The pink triangles are agents, the map shows streets of eastern Japan,

and the shaded area is the radiation field at a particular timestamp.

29	

	

5.3 Test Setup
	

The DSMS application was built using Oracle CEP (Java-based development environment). The

application was run using the Oracle JRockit Runtime server. The application was developed as

a client-server model, in which sensors are clients and DSMS application is the server. Both

clients and server communicate via the TCP/IP protocol.

5.3.1 Client Setup

The Oracle Load Generator program is used to simulate clients, which transmit sensor data to the

DSMS application. The Load Generator is configured to read a CSV file (output data set from

Netlogo) and transfers each row to a server running at a particular port as shown in Figure 5.2.

Other parameters such as data transfer rate and latency of data packet transfer can also be

configured. For, simplicity, we assume no latency in the network and high transfer rate of around

10000 packets per second.

Figure	
 	
 5.2:	
 Load	
 Generator	
 with	
 128	
 sensors	

30	

	

5.3.2 Server Setup
	

The server application, deployed in Oracle JRockit Runtime, continuously listens to client

connections at port 9001, as shown in Figure 5.3. The Load Adapter component within the

server, discussed in Chapter 3, establishes connections with clients and converts raw incoming

data packets into objects of Event Bean class (tuples) and creates an inbound stream channel.

The Processor component runs continuous query on the tuples arriving via an inbound stream

channel. Since, the test data set contains only radiation data, all the incoming tuples of a stream

are used for processing. In a more realistic scenario, incoming data could be heterogeneous in

nature, transmitted from different sensor types like temperature, noise, or air quality. In such a

case, tuples in a stream has to be sorted based on their sensor type. The output from the

execution of a continuous query is sent to the Spatial Field Generator component, which converts

all valid tuples with the same tick as timestamp, into a spatial field object. It also updates point

cloud data maintained in an Oracle database, which corresponds to a spatial field object. The

created spatial field object is populated in an Output Queue to be used by end users.

Figure	
 	
 5.3:	
 Oracle	
 CEP	
 JRockit	
 Server	

	

31	

	

5.4 Experiment Configuration
	

An experiment module was created inside the DSMS server application, which runs in a separate

thread. This module fetches spatial field objects from the Spatial Field Generator 's Output

Queue and executes performance test. The experiment can be configured with the following

parameters for a test:

• iterations - number of runs for each configuration

• radius list - a list of radius for testing IDW interpolation

• tile length - work order unit

• threads - number of parallel IDW interpolation threads

• visualize - georaster creation on/off flag

Four data sets of 16, 32, 64 and 128 sensors were used to run the experiment with 16x16 work

order tiles and four parallel IDW threads. The visualize parameter was always on to create

georaster objects after interpolation. The radius sizes used were 0, 10, 20, 30 and 40 units. The

above configuration was each run for five iterations. However, Oracle Spatial performs internal

caching of the query plan of previously run queries. This impacts performance on consecutive

iterations. Therefore, to eliminate such effects in test results caused by caching, all internal cache

and buffers were flushed for every experiment run configuration. The above factors have to be

considered to obtain mutually exclusive test results for each run.

All the test configurations for the experiment were run on a Lenovo Ideapad z570 laptop with a

2.0 GHz Intel Core i7 (Model i7-2630QM; a quad core processor with eight virtual cores), 8 GB

DDR3 memory at 1067 MHz on a Windows 7 (64 bit) operating system with Java 1.6.0_29 (64

bit).

32	

	

5.4.1 IDW Interpolation Performance Result
	

The runtime results from the interpolation test are shown in Figure 5.4. The interpolation time

increases with both number of sensors and size of radius, as expected.

 However, Graph 5.4 c shows that there is a decrease in the standard deviation (of interpolation

time across radius for a sensor) as the number of sensors increases. This decrease suggests that

the difference in the interpolation time between different radii is only marginal for large numbers

of sensors.

a

33	

	

b

c

Figure	
 	
 5.4:	
 IDW	
 Interpolation	
 Performance	
 Test	
 Result	

However, the average time for interpolation is 341.1 seconds or 5.68 minutes. This is far beyond

real time interpolation capability. Hence, it can be said that the given framework is not suitable

for real time systems where delay is on the order of several minutes.

34	

	

5.4.2 Visualization/Georaster Creation Performance Result
	

The results from the visualization test are shown in Figure 5.5. As expected, the georaster

creation time increases with number of sensors and radius. However, for zero radius (i.e. no

interpolation), the visualization time is almost the same, regardless of the number of sensors.

Therefore, the data stored in a point cloud is directly exported as a georaster. The standard

deviation of the visualization time for radius 0 is 1.29 seconds.

a

35	

	

B

c

Figure	
 	
 5.5:	
 Georaster	
 Creation	
 Performance	
 Test	
 Results	

The average time for the visualization test configuration is 336.05 seconds. This statistic shows a

serious performance issue with respect to increase in the number of sensors and higher radii.

36	

	

The average time for the visualization test configuration is 336.05 seconds. This statistic shows a

serious performance issue with respect to increase in the number of sensors and higher radii.

Figure 5.5c shows that block-based georaster creation time outperforms cell-based as discussed

in Chapter 4. As the interpolation radius increases, the difference between georaster creation

time for both approaches widens. The improved block-based approach seems to perform better

with increasing radii. On an average, the improved approach reduces the interpolation time by

74%.

Overall, georaster creation time (std dev=380.78 seconds) does not scale well compared to

interpolation time (std dev=11.71 seconds). At 99% confidence, both standard deviations are

different. The calculated F value is 4.055E-16, which is less than the critical F value of 3.027.

5.4.3 Discussion of Results

To sum up, both interpolation and visualization performance of the discussed DSMS application

do not fare well with respect to real time spatial interpolation of a continuous phenomenon. The

average response time for interpolation and visualization of a phenomenon is 852.33 seconds or

14.2 minutes for sensors ranging from 16 to 128. For real time applications based on

environmental sensing, response time has to be on the order of milliseconds to seconds in order

to leverage real time benefits. During, a 14-minute time span, a phenomenon could have moved

or changed and the response represents a past moment in time.

37	

	

	

This project investigated the potential runtime performance of near real-time spatial interpolation

of sensor data streams to approximate a dynamic continuous phenomenon using mostly built-in

Oracle CEP and Oracle Spatial functionality. We implemented a framework within a DSMS that

converts raw sensor data into an abstract spatial field object, which is implemented as a stream

query and stores its data in a traditional DBMS temporarily until it is interpolated and

materialized using Oracle’s georaster. The results showed that commercial DSMSs like Oracle

CEP/Spatial are not yet equipped to perform real-time spatial interpolation due to various

architectural bottlenecks. Novel architectural components need to be added to a DSMS to

support adequate support for real-time spatial interpolation if sensor data streams should be

processed and to provide a response time in the order of milliseconds to seconds.

The main reasons for the inadequate performance of Oracle CEP with Oracle Spatial are

today:(1) there is no support for in-memory spatial databases in Oracle Spatial. Although the

concept of virtual tables or temporary tables exists, currently there is no support for partitioning,

clustering or indexing of spatial data within virtual tables. (2) BLOB storage of point cloud and

raster data is highly scalable and enables us to utilize the traditional benefits such as indexing of

DBMS, but it makes read/write operation slower. Having said that, there are ways of improving

the performance of the discussed application by using higher processing power [15] and running

interpolation in clouds for processing very large extent maps (basically ‘throwing machines are

the problem’).

Chapter 6 : Conclusions	
 And	
 Future	
 Work	

38	

	

For future work, the spatial field data model developed from this project could be extended to

formalize a spatial field data model that could be integrated into a DSMS but it needs more

specialized stream-oriented spatial support. Some interesting questions remain: How to extend

the spatial filed data model to define interaction among spatial field objects?

39	

	

[1]. http://esper.codehaus.org/tutorials/tutorial/tutorial.html

[2].Biem, A., Bouillet, E., & Feng, H. (2010). IBM InfoSphere Streams for Scalable , Real-

Time, Intelligent Transportation Services. SIGMOD ’10: Proceedings of the 2010 ACM

SIGMOD International Conference on Management of Data (pp. 1093–1103).

Indianapolis, IN.

[3].Ali, M., Chandramouli, B., Raman, B. S., & Katibah, E. (2010). Real-time spatio-

temporal analytics using Microsoft StreamInsight. Proceedings of the 18th SIGSPATIAL

International Conference on Advances in Geographic Information Systems - GIS ’10

(pp. 542–543). New York, New York, USA: ACM

[4].Oracle. (2009). Oracle Complex Event Processing  : Lightweight Modular Application

Event Stream Processing in the Real World.

[5].http://streambase.com/developers/docs/latest/streamsql/index.html

[6].Heeren, H. V., & Salomon, P. (n.d.). MEMS - Recent Developments, Future Directions.

[7].Paulos, E., Honicky, R., & Hooker, B. (2008). Citizen science: Enabling participatory

urbanism. Urban Informatics: community Integration and Implementation (pp. 1–16).

[8].http://download.oracle.com/technology/software/cep-ide/11

[9].Zdonik, S. (2004). Streaming for Dummies

[10].Jain, N., Mishra, S., Srinivasan, A., Gehrke, J., Widom, J., Balakrishnan, H.,

Cetintemel, U., et al. (2008). Towards a streaming SQL standard. Proceedings of the

VLDB Endowment, 1(2), 1379-1390.

BIBLIOGRAPHY	

40	

	

[11].Ali, M. H., Aref, W. G., Bose, R., Elmagarmid, A. K., Helal, A., Kamel, I., & Mokbel,

M. F. (2005). NILE-PDT: A phenomenon detection and tracking framework for data

stream management systems. Proceedings of the 31st international conference on Very

large data bases (pp. 1295–1298).

[12].Mitas, L., & Mitasova, H. (1999). Spatial interpolation. In P. Longley, M. F.

Goodchild, D. J. Maguire, & D. W. Rhind (Eds.), Geographical Information Systems:

Principles, Techniques, Management and Applications (2nd ed., pp. 481-492). Wiley.

[13].http://en.wikipedia.org/wiki/Data-stream_management_system

[14].Emine Nesime Tatbul , Load Shedding Techniques for Data Stream Management

Systems” Ph.D thesis, Brown University, May 2007

[15].http://data-informed.com/fast-database-emerges-from-mit-class-gpus-and-students-

invention

[16].Management, D. S. (2010). Data Stream Management and Complex Event Processing

in Esper.

[17].http://msdn.microsoft.com/en-us/library/ee362541.aspx

[18].Oracle, A., & Paper, W. (2008). Oracle Complex Event Processing Performance Oracle

Complex Event Processing Performance, (November).

[19].http://docs.oracle.com/cd/E16764_01/doc.1111/e12048/operators.htm#CHDFGJGJ

[20].Introduction, I. (n.d.). Point Cloud  : Storage , Loading , and Visualization by Siva

Ravada, Mike Horhammer, Baris M. Kazar, Oracle Spatial, Oracle USA, Inc., One

Oracle Drive, Nashua, NH 03062, USA

[21].Oracle. (2007). Oracle Spatial 11g GeoRaster , An Oracle Technical White Paper June

2007

41	

	

[22].Stonebraker, M., & Centintemel, U. (2005). One size fits all: An idea whose time has

come and gone. Proceedings of International Conference on Data Engineering

(ICDE’05) (pp. 2-11). Tokyo, Japan.

[23].Nittel, S., Whittier, J. C., & Liang, Qi. (2012). Real-time Spatial Interpolation of

Continuous Environmental Data Streams using Mobile Sensor Streams. SIGSPATIAL

2012. Redondo Beach, CA.

[24].http://www.sendung.de/japan-radiation-open-data

[25].http://blog.safecast.org/

	

