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ABSTRACT 

 

Metric refinements of qualitative topological relations not only provide more details of 

distinctions between spatial entities, but also theoretical interests and applications. This paper 

developed an alternative way of metric refinements for improving the identification of the eight 

topological relations with the aid of the extension of convex hull concept to defining relations 

between two spatial regions. We defined some area terms and relative ratio factors for metric 

refinements that can be successfully and uniquely applied to the eight basic relations.  

 
 

1. Introduction 

 

Qualitative reasoning provides coarse, intuitive, and flexible ways of determining topological 

relations between spatial objects, and is one of the basic topics of geographic information system 

(GIS). The motivation of research in qualitative reasoning is also from its potential applications 

in other different areas such as robotic navigation, spatial propositional semantics of natural 

languages, engineering design, and high level vision [1]. Previous research work in spatial 

reasoning has studied various aspects of space, among which topological relations are especially 

emphasized.  Egenhofer et al. (1991, 1993) developed a point-set-based 9-intersection model [2-

4], which derives eight fundamental spatial relations similar to those described in the Region-

Connection Calculus (RCC) developed by Randell et al. (1992) [5]. The extensions of 9-

intersection model have been developed since then, such as the Dimensionally Extended nine-

Intersection Model (DE-9IM) and Calculus-Based Method (CMB) by Clementini et al. [6, 
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7],  which becomes a standard used to describe the spatial relations of two geometrical regions, 

point-set topology, geospatial topology, and fields related to computer spatial analysis. In 

addition, Chen et al. (1998, 2001) proposed a Voronoi-based 9-intersection model by replacing 

the exterior of an entity with its Voronoi region [8, 9], which has to certain degree improvement 

in solving some practical problems in the original 9-intersection model such as difficulties in 

distinguishing different disjoint relations and relations between complex entities with holes. 

However, the purely qualitative representation and reasoning or topology per se is usually 

insufficient to depict the spatial relations between objects in the real world, and we need to 

consider other metric aspects or details of the spatial relations to make to some degree subtle but 

very important distinctions [1, 10].  

 

The metric details for refinements of different categories of spatial relations either by the 9-

interaction or RCC-8 should provide a more precise measure than topology alone. Research 

efforts in metric spatial reasoning have been addressed on some aspects of space such as 

direction and orientation [11-14],  distance [15],  size [16], and shape [17]. Since a metric space 

exhibits both metric and topological properties [18], some research approaches or models 

combining topology and metric aspects such as distance and size have been developed [18-23].  

Here we are most interested in how to combine distance or closeness with topology to reason the 

spatial relations. The problem of most previous work is that reasoning with linear distance alone 

and without consideration of other aspects especially direction often hardly arrives at a 

conclusion [11, 18].  

 

http://en.wikipedia.org/wiki/Specification_(technical_standard)
http://en.wikipedia.org/wiki/Spatial_relation
http://en.wikipedia.org/wiki/Point-set_topology
http://en.wikipedia.org/wiki/Geospatial_topology
http://en.wikipedia.org/wiki/Spatial_analysis
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In this paper, we first introduced the concept of convex hull to define the merged region of two 

original spatial objects we are trying to deal with the relations and then the outside and inside 

delta areas which can easily be used to capture the expansion and contraction closeness.  

 

 

2. Extension of Convex Hull to Topological Relations 

 

The spatial objects or regions considered in this section are embedded in IR
2
 as defined in [18], 

and they have a continuous boundary, no holes, no spikes, and no cuts. In addition, we use the 

concept of convex hull or polygon of a set of two-dimensional points [24] for a specific spatial 

region.  Let A and B be two convex hulls representing two spatial regions in the two dimensional 

plane, denoted as CH(A) and CH(B), and we subsequently determine the convex hull CH(A, B) 

by merging A and B.  The convex polygon CH(A, B) is obtained by tracing the two tangents 

(upper and down) common to A and B [24] (Figure 2). 

 

The eight fundamental topological relations between two such spatial regions or convex hulls 

here shown in Figure 2 are based on the 9-intersection model [2, 18]. From Figure 2 we can see 

that the normal convex polygons CH(A, B) defined as above can be obtained only in the relations 

of disjoint, meet and overlap. In the relation of equal, actually, CH(A, B) = CH(A) = CH(B). In 

the relations of coveredBY, inside, covers, and contains, one region is embedded inside another. 

In order to use the concept of convex hull and determine the contraction closeness for all these 

relations (to be discussed in details in section 4) we introduce the concept of “mirror” object or 

right/left dual object for the embedded object. Let the mirror objects of A and B be A’ and B’ 

with dotted boundary, respectively, so the imaginary convex hulls with dotted tangents for these 

four relations are shown in Figure 2. Among these eight topological relations, the non-empty 
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intersections including meet, overlap and equal are able to capture metric details, which have 

been addressed in previous studies [25-27]. However, the empty intersections including disjoint, 

coveredBy, inside, covers, and contains are unable to be further distinguished with more metric 

details.  

 

 
 

Figure 2. The eight topological relations between two regions in IR
2 

with their merged 

convex hull representations.  
 

 

 

3. Convex-Hull-Based Metric Refinements for Region-Region Relations 
 

Metric details are used to refine and enhance qualitative and coarse topological relations. Two 

types of measures for metric refinements for region-region relations have been developed in [18], 
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one called splitting measures for distinguishing non-empty intersections involving 0, 1, and 2-

dimensional intersections, and another called closeness measures for refining empty intersections 

including expansion closeness (EC) and contraction closeness (CC). In this section, we are trying 

to develop an alternative way to refine region-region relations with the aid of convex hull 

concepts defined in the previous section. What we especially emphasize here is to use the 

relative or scale-independent measure of area values to refine either empty or non-empty 

intersections.  

 

Let us consider three convex hulls here, CH(A), CH(B) and CH(A, B), corresponding to the two 

original spatial regions we are dealing with what kind of relations will be and the newly emerged 

reference spatial region. Considering the boundaries of the two original spatial objects A and B 

in CH(A, B), there is some extra area or space between CH(A, B) and the original CH(A) and 

CH(B) in the relations of disjoint, meet, and overlap (Figure 2 and 3). Note that we exclude the 

exceptions as shown in Figure 4 in which no extra area needed to form CH(A, B) from CH(A) 

and CH(B), i.e, CH(A, B) = CH(A) + CH(B). We define this area as the outside delta area, 

denoted as ∆outside, and the specific outside delta areas in the relations of meet, disjoint, and 

overlap as ∆meet, ∆disjoint, and ∆overlap, respectively. We also define the common parts in the 

overlap relation as ∆ab. While dealing with the relations of coveredBy, inside, covers and 

contains we need to use the mirror or right dual objects of the smaller one as references, which 

are inside another. By creating the imagined convex hulls, correspondently, we can define the 

inside delta area, denoted as ∆in, and the specific inside delta areas in the relations of coveredBy, 

inside, covers, and contains as ∆coveredBy, ∆inside, ∆covers, and ∆contains, respectively. Therefore, no 

matter what empty or non-empty intersection we deal with, we can define a ratio of the outside 

or inside delta area with respect to the area of the either of two spatial regions. In the overlap 

relation we also define a ratio of the common part with respect to the area of one of two original 

regions. We define three major area ratio factors as follows: 



6 
 

 Outside Closeness (OC): the expanding or outside delta area required so that together 

with the original CH(A) and CH(B) to form CH(A, B). This is similar to the concept of 

Expansion Closeness (EC) defined in [18] but the difference is that OC does not consider 

entire buffered zone. OC can be used in the relations of meet, disjoint, and overlap.  

 Inside Closeness (IC): the inside delta area proportionally reflecting the imagined outside 

delta area required so that together with the bigger region and the mirror of the smaller 

region to form the imagined CH(A, B). This is similar to the Contraction Closeness (CC) 

in [18] but not using the contracted and buffered delta zone as measure. IC can be applied 

for metric refinements for the relations of coveredBy, inside, covers, and contains.  

 Intersection Degree (ID): the common or intersecting portion with respect to the area of 

CH(A) or CH(B). ID is the same as the inner area splitting (IAS) defined in [18].  

Corresponding formula for the ratio factors above and some other related terms are defined 

below:   

   

 

 

 

 

In the relations of meet and disjoint:  

∆outside = Area (CH(A, B)) – Area (CH(A)) – Area (CH(B)) 

In the relation of overlap:  

∆outside = Area (CH(A, B)) – Area (CH(A)) – Area (CH(B)) + ∆ab 
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Figure 3.  Specification of the common portion (∆ab), inside and outside delta areas (∆inside 

and ∆outside) between two spatial regions A and B for the eight topological relations.  
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Figure 4.  Selected exceptions for CH(A, B) =  CH(A) + CH(B) when spatial region A meets  

region B.  

 

 

 

4. Refinement Specifications to Region-Region Topological Relations 

 

In this section, we study the metric refinements for each of eight topological relations with OC, 

IC, ID and other metric terms defined in this paper. Different metric refinements with different 

values can be used to identify the specific topological relations.  

 

For the relation of disjoint there is a largest ∆outside compared to other relations. The Outside 

Closeness (OC) for disjoint is based on a greater than zero ∆outside, meaning that the value range 

should be greater than zero and less than one. We can also standardize the OC, denoted as OC’, 

by replacing ∆outside with ∆disjoit = ∆outside - ∆meet.  

 

In the relation of meet we can define ∆meet as the base outside delta area because we can 

definitely identify one unique or fixed ∆meet from one direction. So, we consider the OC for meet 

as the base OC (the range value: greater than zero and less 1) for differentiating it from the 

relations of disjoint and overlap. We will have OCoverlap < OCmeet  < OCdisjoint.  
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In the relation of overlap there is a smallest ∆outside,  specifically denoted as ∆overlap. Therefore, 

the OCoverlap is the smallest as shown above although the value range is still greater than zero and 

less than one. However, for the relation of overlap we have another ratio factor, Intersection 

Degree (ID), reflecting the degree of overlapping or common area. The relation between 

OCoverlap and ID is that the less the OCoverlap is, the larger the ID.  

 

In the relation of equal there is no either ∆outside or ∆in.  However, ∆overlap reaches the maximum, 

i.e. ∆overlap = Area (CH(A)) = Area (CH(B)) = Area (CH(A, B)). For the equal relation, no 

expansion and contraction needed, i.e., OC = 0 and IC = 0.  

 

For the relations of coveredBy and covers we can define ∆in  as ∆coveredBy and ∆covers, the base 

inside delta areas because we can determine one unique either ∆coveredBy  or ∆covers from one 

direction inner contact. So, we consider the IC for coveredBy as the base IC (the range value: 

greater than zero and less 1) for differentiating it from the relation of inside, and the IC for 

covers as the base IC different from the IC of the inside relation. We will have OCcoveredBy < 

ICinside  and ICcovers < ICcontains  .  

 

For the relations of inside and contains we have noticed above that the ∆in is larger than either 

∆coveredBy or ∆covers because the smaller region is away from the inner boundary. Similarly, the 

Inside Closeness (IC) for coveredBy and covers is based on a greater than zero ∆in, implying that 
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the value range is greater than zero and less than one. We can also standardize the IC, denoted as 

IC’, by replacing ∆in with ∆inside = ∆in – ∆coveredBy or ∆contains = ∆in – ∆covers. 

 

While dealing with the eight topological relations between two investigated spatial regions, we 

can always determine the unique area terms and ratio factors for the relations of meet, coveredBy 

and covers as the references for comparing the relative expansion and contraction closeness. To 

show that metric refinements based on these area terms are sufficient to distinguish all the eight 

fundamental topological relations, we construct the table 1 showing the distinctions between 

these relations in terms of metric refinements defined in this paper.  

 

 

 

Table 1. A table showing different combinations of metric refinements with area terms for 

distinguishing the eight topological relations.  

 

Topological relation ∆outside / OC ∆ab ∆in / IC 

disjoint >∆meet / > OCmeet null null 

meet ∆meet / OCmeet null null 

overlap <∆meet / < OCmeet + null 

equal 0 max 0 

coveredBy null null ∆coveredBy / ICcoveredBy 

inside null null >∆coveredBy / ICcoveredBy 

covers null null ∆covers / ICcovers 

contains null null  >∆covers / ICcovers 
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5. Conclusions 
 

In this paper, we successfully used the defined area terms and relative ratio factors for metric 

refinements with the extension of convex hull concept to uniquely derive the eight fundamental 

topological relations. The outside and inside delta areas with the context of convex hull concept 

were defined. Consequently, we used the Outside Closeness (OC) for replacing the Expansion 

Closeness (EC) and the Inside Closeness (IC) for replacing the Contraction Closeness defined in 

other previous research. The OC alone can be used to capture disjoint and meet relations, and the 

combination of OC and ID measures is applied to capture overlap metric refinements. The IC 

alone can be used to characterize the contraction closeness for inside and contains with the base 

metric measures of converedBy and convers relations. This paper provides a new and alternative 

way of metric refinements for capturing the topological relations.  
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